Skip to main content

Advertisement

Log in

Screening of the Effect of Mutation Breeding On Biotic Stress Tolerance and Quality Traits of Durum Wheat

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Breeding is a promising tool to increase genetic diversity in crop plants for the selection and transfer of favorable genes. Mutation breeding techniques were considered as an evolutionary breeding tool for creating a new elite genotypes resistant to multiple biotic and abiotic stresses. In this context, a total of 70 M4 and 37 M5 mutants selected from three levels of gamma irradiation (100, 150, and 250 Gy) were evaluated for disease resistance and quality traits. Under field conditions, M5 selected mutants at 150 Gy showed higher diseases resistance (Septoria tritici blotch, tan spot, yellow rust, and leaf rust) as well as better grain quality parameters(thousand kernel weight, grain protein content, test weight, gluten content, and wet gluten content). Positive correlations were established for most of the considered parameters on M5 along with a negative association with Septoria tritici blotch, yellow rust, thousand kernel weight, and test weight. Principal component analysis (PCA) showed that100 Gy and 150 Gy were good gamma irradiation dose levels in improving and giving effective desirable traits,especially 150 Gy which ensures the best disease resistance and grain quality. These findings are promising tools for exploring the implication of mutation on genetic mechanisms and the transfer of complex traits on elite genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

STB:

Septoria Tritici Blotch

TS:

Tan spot

PS:

Yellow rust

PT:

Leaf rust

TKW:

Thousand kernel weight

TW:

test weight

PC:

Grain Protein content

WGC:

wet gluten content

GC:

gluten content

YB:

yellow berry

H:

grain humidity.

References

  • Afzal SN, Haque MI, Ahmedani MS, Rauf A, Munir M, Firdous SS, Ratu AR, Ahmad I (2008) Impact of stripe rust on kernel weight of wheat varieties sown in rainfed areas of Pakistan. Pak J Bot 40(2):923–929

    Google Scholar 

  • Aly AA, Maraei RW, Ayadi S (2018) Some biochemical changes in two Egyptian bread wheat cultivars in response to gamma irradiation and salt stress. Bulg J Agric Sci 24(1):50–59

    Google Scholar 

  • Aly AA, Eliwa NE, Maraei RW (2019a) Physiological and molecular studies on ISSR in two wheat cultivars after exposing to gamma radiation. Sci Asia 45:436–445. https://doi.org/10.2306/scienceasia1513-1874.2019.45.436

    Article  CAS  Google Scholar 

  • Aly AA, Maraei RW, Baraket M (2019b) Effects of gamma irradiation and salt stress on amino acids and protein fractions of two Egyptian bread wheat (Triticum aestivum L.) cultivars. Bangladesh J Bot 48(4):1175–1184

    Article  Google Scholar 

  • Amamou H, Sassi MB, Aouadi H, Khemiri H, Mahouachi M, Beckers Y, Hammami H (2018) Climate change-related risks and adaptation strategies as perceived in dairy cattle farming systems in Tunisia. Clim Risk Manag 20:38–49. https://doi.org/10.1016/J.CRM.2018.03.004

    Article  Google Scholar 

  • Arabi MIE, Jawhar M (2004) Interaction effect of irradiation and fertilization on grain yield, kernel weight and severity of wheat to Septoria tritici blotch. Seventh Arab Conference on the peaceful Uses of atomic energy, Sana, 4–8 Dec. 2004.

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27(6):744–752. https://doi.org/10.1016/j.biotechadv.2009.05.026

    Article  CAS  PubMed  Google Scholar 

  • Azzeh FS, Amr AS (2009) Effect of gamma irradiation on physical characteristics of Jordanian durum wheat and quality of semolina and lasagna products. Radiat Phys Chem 78(2):818–822. https://doi.org/10.1016/j.radphyschem.2009.04.003

    Article  CAS  Google Scholar 

  • Bahri BA, Leconte M, Rebai H, de Vallavieille CP (2016) Wheat yellow rust dynamics in Tunisia since 2013 and resistance genes in durum wheat. Phytopathology 106(12):84–84

    Google Scholar 

  • Balkan A, Bilgin O, Başer İ (2021) Improvement of grain quality traits in bread wheat genotypes through mutation breeding using gamma irradiation. J Agric Sci 31(4):973–981. https://doi.org/10.29133/yyutbd.899862

    Article  Google Scholar 

  • Bouatrous A, Harbaoui K, Karmous C, Gargouri S, Souissi A, Belguesmi K, Cheikh Mhamed H, Gharbi MS, Annabi M (2022) Effect of wheat monoculture on durum wheat yield under rainfed sub-humid Mediterranean climate of Tunisia. Agron 12(6):1453. https://doi.org/10.3390/agronomy12061453

    Article  CAS  Google Scholar 

  • Brunner H (1991) Methods of induction of mutations. In: Mandal AK, Ganguli PK, Banerjee SP (eds) Advances in plant breeding. CBS Publishers and Distributors, Delhi

    Google Scholar 

  • Colasuonno P, Marcotuli I, Blanco A, Maccaferri M, Condorelli GE, Tuberosa R, Parada R, de Camargo AC, Schwember AR, Gadaleta A (2019) Carotenoid pigment content in durum wheat (Triticum turgidum L. var durum): an overview of quantitative trait loci and candidate genes. Front Plant Sci 10:1–14. https://doi.org/10.3389/fpls.2019.01347

    Article  Google Scholar 

  • Desouky O, Ding N, Zhou G (2015) Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci 8:247–254. https://doi.org/10.1016/j.jrras.2015.03.003

    Article  CAS  Google Scholar 

  • Di Pane FJ, Lopez CS, Cantamutto MÁ, Domenech MB, Castro-Franco M (2018) Effect of different gamma radiation doses on the germination and seedling growth of wheat and triticale cultivars. Aust J Crop Sci 12(12):1921–1926. https://doi.org/10.21475/ajcs.18.12.12.p1251

    Article  CAS  Google Scholar 

  • Fayaz F, Sarbarzeh MA, Talebi R, Azadi A (2019) Genetic diversity and molecular characterization of Iranian durum wheat landraces (Triticum turgidum durum (Desf.) Husn.) using DArT Markers. Biochem Genet 57(1):98–116. https://doi.org/10.1007/s10528-018-9877-2

    Article  CAS  PubMed  Google Scholar 

  • Ferjaoui S, Aouini L, Slimane RB, Ammar K, Dreisigacker S, Schouten HJ, Sapkota S, Bahri AB, M’barek BS, Visser RGF, Kema GHJ, Hamza S (2022) Deciphering resistance to Zymoseptoria tritici in the Tunisian durum wheat landrace accession ‘Agili39. BMC Genom 23(1):1–20. https://doi.org/10.1186/s12864-022-08560-2

    Article  CAS  Google Scholar 

  • Garrido-Lestache E, Lopez-Bellido RJ, Lopez-Bellido L (2005) Durum wheat quality under Mediterranean conditions as affected by N rate, timing and splitting N and S fertilization. Eur J Agron 23(3):265–278

    Article  CAS  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 3:707–715

    Google Scholar 

  • Hazard B, Zhang X, Naemeh M, Hamilton MK, Rust B, Raybould HE, Dubcovsky J (2015) Mutations in durum wheat SBEII genes affect grain yield components, quality, and fermentation responses in rats. Crop Sci 55(6):2813. https://doi.org/10.2135/cropsci2015.03.0179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellin J, Shiferaw B, Cairns JE, Reynolds M, Ortiz-Monasterio I, Banziger M, Sonder K, Rovere RL (2012) Climate change and food security in the developing world: Potential of maize and wheat research to expand options for adaptation and mitigation. J Dev Agric Econ 4(12):311–321. https://doi.org/10.5897/JDAE11.112

    Article  Google Scholar 

  • Henry RJ (2019) Innovations in plant genetics adapting agriculture to climate change. Curr Opin Plant Biol 56:168–173. https://doi.org/10.1016/j.pbi.2019.11.004

    Article  PubMed  Google Scholar 

  • Hong MJ, Kim DY, Jo YD, Choi HI, Ahn JW, Kwon SJ, Kim SH, Seo YW, Kim JB (2022) Biological effect of gamma rays according to exposure time on germination and plant growth in wheat. Appl Sci 12(6):3208. https://doi.org/10.3390/app12063208

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Kenzhebayeva S, Turasheva S, Doktyrbay G, Buerstmayr H, Atabayeva S, Alybaeva R (2014) Screening of mutant wheat lines to resistance for Fusarium head blight and using SSR markers for detecting DNA polymorphism. IERI Proc 8:66–76. https://doi.org/10.1016/j.ieri.2014.09.012

    Article  Google Scholar 

  • Khah MA, Verma RC (2015) Assessment of the effects of gamma radiations on various morphological and agronomic traits of common wheat (Triticum aestivum L.) var. WH-147. Eur J Exp Biol 5(7):6–11

    Google Scholar 

  • Kharkwal MC, Pandey RN, Pawar SE (2004). Mutation breeding for crop improvement. In: Plant breeding, pp 601–645

  • Köksel H, Sapirstein HD, Süeda Ç, Bushuk W (1998) Effects of gamma-irradiation of wheat on gluten proteins. J Cereal Sci 28(3):243–250

    Article  Google Scholar 

  • Kozub NA, Sozinov IA, Blume YB, Sozinov AA (2013) Study of the effects produced by gamma-irradiation of common wheat F1 seeds using gliadins as genetic markers. Cytol Genet 47(1):13–19. https://doi.org/10.3103/S0095452713010040

    Article  Google Scholar 

  • Lafiandra D, Colaprico G, Kasarda DD, Porceddu E (1987) Null alleles for gliadin blocks in bread and durum wheat cultivars. Theor Appl Genet 74:610–616

    Article  CAS  PubMed  Google Scholar 

  • Mansouri S, Radhouane L (2015) Morphological characteristics and water status of some Tunisian barley genotypes submitted to water stress. Int J Res Granthaalayah 3(5):60–76. https://doi.org/10.29121/granthaalayah.v3.i5.2015.3016

    Article  Google Scholar 

  • McCluney KE, Belnap J, Collins SL, González AL, Hagen EM, Holland NJ (2012) Shifting species interactions in terrestrial dry land ecosystems under altered water availability and climate change. Biol Rev Camb Philos Soc 87:563–582. https://doi.org/10.1111/j.1469-185X.2011.00209.x

    Article  PubMed  Google Scholar 

  • McDonald BA, Mundt CC (2016) How knowledge of pathogen population biology informs management of Septoria tritici blotch. Phytopathology 106(9):948–955. https://doi.org/10.1094/PHYTO-03-16-0131-RVW

    Article  PubMed  Google Scholar 

  • McNeal FH, Konzak CF, Smith EP, Tate W, Russel TS (1971) A uniform system for recording and processing cereal research data. US Agri Res Ser 42:34–121

    Google Scholar 

  • Meena N, Mishra VK, Baranwal DK, Singh AK, Rai VP, Prasad R, Arun B, Chand R (2014) Genetic evaluation of spring wheat (Triticum aestivum L.) recombinant inbred lines for spot blotch (Bipolaris Sorokiniana) resistance and yield components under natural conditions for South Asia. J Agric Sci Technol 16:1429–1440

    Google Scholar 

  • Nayeem KA, Devokule SN, Bhagwat SG (1999) Seed protein variations in radiation induced mutants of wheat. Indian J Gen Plant Breed 59:371–373

    Google Scholar 

  • Nazarenko M (2016) Identification and characterization of mutants induced by gamma radiation in winter wheat (Triticum aestivum L.). Sci Pap Ser A Agro 59:350–353

    Google Scholar 

  • Ogutu EA, Charimbu MK (2020) Assessment of adult plant resistance to stem rust (Puccinia graminis f.sp tritici) in wheat (Triticum aestivum L.) mutant lines. Am J Agric 8(1):30–39. https://doi.org/10.11648/j.ajaf.20200801.15

    Article  Google Scholar 

  • Ortiz-Monasterio JI, Manske GGB, van Ginkel M (2002) Nitrogen and phosphorus use efficiency. In: Reynolds MP, Ortiz-Monasterio JI, Mcnab A (eds) Application of physiology in wheat breeding; chap 17. CIMMYT, Mexico, pp 200–207

    Google Scholar 

  • Ouaja M, Aouini L, Bahri B, Ferjaoui S, Medini M, Marcel TC, Hamza S (2020) Identification of valuable sources of resistance to Zymoseptoria tritici in the Tunisian durum wheat landraces. Eur J Plant Pathol 156:647–661. https://doi.org/10.1007/s10658-019-01914-9

    Article  CAS  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res 60:496–500

    Article  Google Scholar 

  • Rahimi MM, Bahrani A (2011) Influence of gamma irradiation on some physiological characteristics and grain protein in wheat (Triticum aestivum L.). World Appl Sci J 15(5):654–659

    CAS  Google Scholar 

  • Ray D, Mueller N, West P, Foley J (2013) Yield trends are insufficient to double global crop production by 2050. Plos One 8(6):e66428. https://doi.org/10.1371/journal.pone.0066428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy VRK, Viswanathan P (1999) Induced rust resistant mutants in hexaploid wheat “WH147”. Crop Res 18:443–445

    Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Saint Pierre C, Peterson CJ, Ross AS, Ohm JB, Verhoeven MC, Larson M, Hoefer B (2008) Winter wheat genotypes under different levels of nitrogen and water stress: Changes in grain protein composition. J Cereal Sci 47:407–416. https://doi.org/10.1016/j.jcs.2007.05.007

  • Saari EE, Prescott JM (1975) A scale for appraising the foliar intensity of wheat disease. Plant Dise Rep 59:377–380

    Google Scholar 

  • Sakin MA, Yildirim A, Gökmen S (2005) Determining some yield and quality characteristics of mutants induced from a durum wheat (Triticum durum Desf.) cultivar. Turk J Agric For 29(1):61–67

    Google Scholar 

  • Shah TM, Atta B, Mirza JI, Haq M (2012) Radio-sensitivity of various chickpea genotypes in M1 generationII-field studies. Pak J Bot 44(2):631–634

    Google Scholar 

  • Sharma RC, Duveiller E (2007) Advancement toward new spot blotch resistant wheats in South Asia. Crop Sci 47:961–968

    Article  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270. https://doi.org/10.1111/j.1365-3040.2011.02336.x

    Article  CAS  PubMed  Google Scholar 

  • Tissaoui S, Hassine M, Mougou-Hamdane A, Araar AE, Nasraoui R, Nasraoui B (2022) Varietal screening of durum wheat varieties for resistance to Pyrenophora tritici-repentis (Tan Spot) under field conditions. Biomed Res Int 22:1–12. https://doi.org/10.1155/2022/6433577

    Article  CAS  Google Scholar 

  • Ullah I, Ashraf M, Zafar Y (2008) Genotypic variation for drought tolerance in cotton (Gossypium hirsutum L.): Leaf gas exchange and productivity. Flora-Morphology, Distribution. Funct Ecol Plants  203:105–115

  • Venske E, Dos SRS, Busanello C, Gustafson P, Costa de Oliveira A (2019) Bread wheat: a role model for plant domestication and breeding. Hered 156(1):1–11. https://doi.org/10.1186/s41065-019-0093-9

    Article  Google Scholar 

  • Vicente-Serrano SM (2006) Spatial and temporal analysis of droughts in the Iberian Peninsula (1910–2000). Hydrol Sci J 51(1):83–97

    Article  Google Scholar 

  • Wang J, Yu Y (2009) Effect of gamma-ray irradiation on the physicochemical properties of flour and starch granule structure for wheat. Int J Food Sci Techno 44(4):674–680

    Article  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages to cereals”. Weed Res 14(6):415–421

    Article  Google Scholar 

  • Zulfiqar S, Ishfaq S, Ikram M, Nawaz MA, Rahman MU (2021) Characterization of gamma-rays-induced spring wheat mutants for morphological and quality traits through multivariate and GT Bi-Plot analysis. Agron 11(11):2288. https://doi.org/10.3390/agronomy11112288

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Laboratory of Genetics and Cereal Breeding (LRGAC) at the National Agronomic Institute of Tunisia (INAT), the Regional Field Crops Research Center of Beja (CRRGCB) and Tunisian cereals office at Bir El Kassaa (OC). The authors wish to thank Mouna Guesmi for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

The concept and design of the experiments were prepared by all authors. MH carried out the experiments, collected the data, performed the analysis and wrote the paper. MB coordinated field experiments and helped in the writing of the paper. NM performed the statistical analysis and helped in writing the paper. HSA supervised the analysis of the results and corrected the manuscript draft. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Marwa Hassine.

Ethics declarations

Conflict of interest

M. Hassine, M. Baraket, N. Marzougui and H. Slim-Amara declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassine, M., Baraket, M., Marzougui, N. et al. Screening of the Effect of Mutation Breeding On Biotic Stress Tolerance and Quality Traits of Durum Wheat. Gesunde Pflanzen 75, 837–846 (2023). https://doi.org/10.1007/s10343-022-00750-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00750-y

Keywords

Navigation