Skip to main content
Log in

Biochemical and Physiological Characteristics of Mutant Genotypes in Rice (Oryza sativa L.) Contributing to Salinity Tolerance Indices

Biochemische und physiologische Merkmale von Mutantengenotypen bei Reis (Oryza sativa L.), die zu den Salztoleranzindizes beitragen

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Salinity is the most prevalent abiotic stress faced by plants. Crop improvement can be achieved using genetic diversity. Therefore, this study aimed to identify relative salinity tolerant varieties among five rice mutant genotypes, which were screened between 100 genotypes through fundamental germination and seedling evaluations. The experiment was conducted as split-plot arrangement based on a randomized complete block design with four replications. The treatments consisted of salinity levels (0, 45, 75 mM) as the main plot and mutant genotypes (Tarom Hashemi1 (TH-1), Tarom Hashemi2 (TH-2) and Tarom Hashemi3 (TH-3), Tarom Chaloosi (TC), and Nemat (N)) as subplots. Thirty-day-old rice seedlings were transferred to the plots. One week later, all genotypes were exposed to salinity stress. There has been a positive and significant correlation between shoot dry weight, catalase, and guaiacol peroxidase; in contrast, a significantly negative correlation was observed between shoot dry weight and malondialdehyde. The chlorophyll a and carotenoid contents significantly reduced under salinity, except for TC; while proline, catalase content, and root Na+/K+ ratio increased in all rice genotypes. The lowest and the highest malondialdehyde content was recorded in TC and TH‑1 under 75 mM, respectively. Overall, more salt-tolerant plants showed osmotic adaptation mechanisms by activating antioxidant enzymes, whereas MDA increased in sensitive cultivars. Furthermore, principal component analysis based on salinity tolerance indexes distinguished that TC could be a more tolerant genotype compared with others. Overall, this salt-tolerant genotype could be selected to develop salt-tolerant rice varieties with high yields in the future.

Zusammenfassung

Versalzung ist der häufigste abiotische Stress, dem Pflanzen ausgesetzt sind. Die Verbesserung von Kulturpflanzen kann durch genetische Vielfalt erreicht werden. Ziel dieser Studie war es daher, relativ salztolerante Sorten unter fünf Reis-Mutantengenotypen zu identifizieren, die unter 100 Genotypen durch grundlegende Keimungs- und Sämlingsbewertungen ausgewählt wurden. Der Versuch wurde als Split-Plot-Anordnung auf der Grundlage eines randomisierten vollständigen Blockversuchs mit vier Wiederholungen durchgeführt. Die Behandlungen bestanden aus den Salzgehaltsstufen (0, 45, 75 mM) als Hauptplot und den Mutantengenotypen (Tarom Hashemi1 (TH-1), Tarom Hashemi2 (TH-2) und Tarom Hashemi3 (TH-3), Tarom Chaloosi (TC) und Nemat (N)) als Subplots. Dreißig Tage alte Reissetzlinge wurden eingepflanzt. Eine Woche später wurden alle Genotypen dem Salzstress ausgesetzt. Es wurde eine positive und signifikante Korrelation zwischen dem Trockengewicht der Triebe, der Katalase und der Guajakolperoxidase festgestellt; im Gegensatz dazu wurde eine signifikant negative Korrelation zwischen dem Trockengewicht der Triebe und dem Malondialdehyd-Gehalt beobachtet. Die Gehalte an Chlorophyll a und Carotinoiden nahmen unter dem Salzgehalt signifikant ab, außer bei TC, während Prolin, der Katalasegehalt und das Na+/K+-Verhältnis der Wurzeln bei allen Reisgenotypen zunahmen. Der niedrigste bzw. höchste Malondialdehyd-Gehalt wurde bei TC und TH‑1 bei 75 mM festgestellt. Insgesamt zeigten salztolerantere Pflanzen osmotische Anpassungsmechanismen, indem sie antioxidative Enzyme aktivierten, während der MDA-Gehalt bei empfindlichen Sorten anstieg. Darüber hinaus ergab die Hauptkomponentenanalyse auf der Grundlage der Salztoleranzindizes, dass TC im Vergleich zu anderen ein toleranterer Genotyp sein könnte. Insgesamt könnte dieser salztolerante Genotyp ausgewählt werden, um in Zukunft salztolerante Reissorten mit hohen Erträgen zu entwickeln.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agami RA (2013) Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South Afr J Bot 88:171–177

    Article  CAS  Google Scholar 

  • Ajithkumar. P (2017) Morphological and biochemical response to salinity stress on Setaria italic seedlings. J Appl Adv Res 2(4):235–248

    Google Scholar 

  • Alam N, Ahmad SR, Qadir A et al (2015) Use of statistical and GIS techniques to assess and predict concentrations of heavy metals in soils of Lahore City, Pakistan. Environ Monit Assess 187:1–11

    Article  CAS  Google Scholar 

  • Alam MS, Tester M, Fiene G, Mousa MAA (2021) Early growth stage characterization and the biochemical responses for salinity stress in tomato. Plants 10:1–20. https://doi.org/10.3390/plants10040712

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J‑K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–448

    Article  CAS  Google Scholar 

  • Chowdhury AD, Haritha G, Sunitha T et al (2016) Haplotyping of rice genotypes using simple sequence repeat markers associated with salt tolerance. Rice Sci 23:317–325. https://doi.org/10.1016/j.rsci.2016.05.003

    Article  Google Scholar 

  • Chunthaburee S, Dongsansuk A, Sanitchon J et al (2016) Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi J Biol Sci 23:467–477. https://doi.org/10.1016/j.sjbs.2015.05.013

    Article  CAS  PubMed  Google Scholar 

  • Deng P, Jiang D, Dong Y, Shi X, Jing W, Zhang W (2015) Physiological characterization and fine mapping of a salt-tolerant mutant in rice (Oryza sativa). Funct Plant Biol 42(11):1026–1035

    Article  CAS  PubMed  Google Scholar 

  • Edge R, Truscott TG (2018) Singlet oxygen and free radical reactions of retinoids and carotenoids—a review. Antioxidants 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekbic E, Cagıran C, Korkmaz K et al (2017) Assessment of watermelon accessions for salt tolerance using stress tolerance indices. Ciên Agrotecnol 41:616–625. https://doi.org/10.1590/1413-70542017416013017

    Article  CAS  Google Scholar 

  • El-Beltagi HS, Ahmad I, Basit A et al (2022) Ascorbic acid enhances growth and yield of sweet peppers (capsicum annum) by mitigating salinity stress. Gesunde Pflanz. https://doi.org/10.1007/s10343-021-00619-6

    Article  Google Scholar 

  • Elsheery NI, Cao K‑F (2008) Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Plant 30(6):769–777

    Article  CAS  Google Scholar 

  • Farooq MA, Saqib ZA, Akhtar J, Faiq H, Pasala BR (2019) Protective role of silicon (si) against combined stress of salinity and boron (B) toxicity by improving antioxidant enzymes activity in rice. Silicon. https://doi.org/10.1007/s12633-015-9346-z

    Article  Google Scholar 

  • Fernandez GCJ (1992) Effective selection criteria for assessing plant stress tolerance. In: Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress Shanhua, Aug. 13–16, pp 257–270

    Google Scholar 

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29:897–912

    Article  Google Scholar 

  • Ghadirnezhad R, Fallah A (2014) Temperature effect on yield and yield components of different rice cultivars in flowering stage. Int J Agron. https://doi.org/10.1155/2014/846707

    Article  Google Scholar 

  • Ghadirnezhad Shiade SR, Esmaeili M, Pirdashti, Nematzade GA (2020) Physiological and biochemical evaluation of six th generation of rice (Oryza sativa L. ) mutant lines under salinity stress. J Plant Process Funct 9:57–72 (In persian)

    Google Scholar 

  • Ghosh B, Md AN, Gantait S (2016) Response of rice under salinity stress: a review update. Rice Res 4(2):2–9

    Google Scholar 

  • Ghosh N, Adak MK, Ghosh PD, Gupta S, Gupta DNS, Mandal C (2011) Differential responses of two rice varieties to salt stress. Plant Biotechnol Rep 5(1):89–103

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Hamada AM (1994) Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biol plant 36(1):75–81

    Article  CAS  Google Scholar 

  • Hernández JA, Almansa S (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115(2):251–257

    Article  PubMed  Google Scholar 

  • Hoai NTT, Shim IS, Kobayashi K, Kenji U (2003) Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regul 41(2):159–164

    Article  CAS  Google Scholar 

  • Hoang T, Tran T, Nguyen T, Williams B, Wurm P et al (2016) Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy 6(4):54

    Article  Google Scholar 

  • Ini DJ, Oseph BJ (2017) Physiological mechanism of salicylic acid for alleviation of Salt stress in rice. Rice Sci 24(2):97–108

    Article  Google Scholar 

  • Khare T, Srivastava AK, Suprasanna P, Kumar V (2020) Individual and additive stress impacts of Na+ and Cl‾ on proline metabolism and nitrosative responses in rice. Plant Physiol Biochem 152:44–52

    Article  CAS  PubMed  Google Scholar 

  • Kibria MG, Hossain M, Murata Y, Hoque MA (2017) Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Sci 24(3):155–162

    Article  Google Scholar 

  • Kumar V, Shriram V, Nikam TD, Jawali N, Shitole MG (2008) Sodium chloride-induced changes in mineral nutrients and proline accumulation in indica rice cultivars differing in salt tolerance. J Plant Nutr 31(11):1999–2017

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and Carotenoids: measurement and characterization by UV-VIS spectroscopy. Handb Food Anal Chem 2:171–178. https://doi.org/10.1002/0471709085.ch21

    Article  Google Scholar 

  • Ma NL, Che Lah WA, Kadir NA et al (2018) Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections. PLoS One 13:1–17. https://doi.org/10.1371/journal.pone.0192732

    Article  CAS  Google Scholar 

  • Manohara KK, Bhosle SP, Singh NP (2019) Phenotypic diversity of rice landraces collected from Goa state for salinity and agro-morphological traits. Agric Res 8(1):1–8. https://doi.org/10.1007/s40003-018-0354-2

    Article  CAS  Google Scholar 

  • Morton MJL, Awlia M, Al-Tamimi N et al (2019) Salt stress under the scalpel-dissecting the genetics of salt tolerance. Plant J 97:148–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumtaz MZ, Saqib M, Abbas G, Akhtar J, Qamar Z (2017) Genotypic variation in rice for grain yield and quality as affected by salt-affected field conditions. J Plant Nutr 4167:1–10

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakhoda B, Leung H, Mendioro MS, Mohammadi-nejad G, Ismail AM (2012) Isolation, characterization, and field evaluation of rice (Oryza sativa L., Var. IR64) mutants with altered responses to salt stress. F Crop Res 127:191–202

    Article  Google Scholar 

  • Oladi M, Nematzadeh GH, Rahimi M, Afkhami Ghadi A, Gholizadeh Ghara A, Mozaffari K, Ziaei A (2015) Effect of gamma ray irradiation on diversity in some local and modified rice cultivars. J Nucl Sci Technol 73:87–80 (In Persian)

    Google Scholar 

  • Omamt EN, Hammes PS, Robbertse PJ (2006) Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes. N Z J Crop Hortic Sci 34(1):11–22

    Article  Google Scholar 

  • Omisun T, Sahoo S, Saha B, Panda SK (2018) Relative salinity tolerance of rice cultivars native to North East India: a physiological, biochemical and molecular perspective. Protoplasma 255:193–202. https://doi.org/10.1007/s00709-017-1142-8

    Article  CAS  PubMed  Google Scholar 

  • Pongprayoon W, Tisarum R, Theerawittaya C, Cha-um S (2019) Evaluation and clustering on salt-tolerant ability in rice genotypes (Oryza sativa L. subsp. indica) using multivariate physiological indices. Physiol Mol Biol Plants 25(2):473–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachmawati D, Fatikhasari Z, Lestari MF (2020) The potential of silicate fertilizer for salinity stress alleviation on red rice (Oryza sativa L. ‘SembadaMerah’). IOP Conf Ser Earth Environ Sci 423:12041

    Article  Google Scholar 

  • Rachoski M, Gazquez A, Calzadilla P et al (2015) Chlorophyll fluorescence and lipid peroxidation changes in rice somaclonal lines subjected to salt stress. Acta Physiol Plant. https://doi.org/10.1007/s11738-015-1865-0

    Article  Google Scholar 

  • Rasel, Tahjib-Ul-Arif M, Hossain MA et al (2020) Discerning of rice landraces (Oryza sativa L.) for morpho-physiological, antioxidant enzyme activity, and molecular markers’ responses to induced salt stress at the seedling stage. J Plant Growth Regul 39:41–59

    Article  CAS  Google Scholar 

  • Rasel M, Tahjib-Ul-Arif M, Hossain MA et al (2021) Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. J Plant Growth Regul 40:1853–1868. https://doi.org/10.1007/s00344-020-10235-9

    Article  CAS  Google Scholar 

  • Reddy INBL, Kim BK, Yoon IS, Kim KH, Kwon TR (2017) Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci 24(3):123–144

    Article  Google Scholar 

  • Ritchie SW, Nguyen HT, Holaday AS (1990) Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci 30(1):105–111

    Article  Google Scholar 

  • Rosielle AA, Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environment 1. Crop Sci 21:943–946

    Article  Google Scholar 

  • RoyChoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26(10):1839–1859

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi H, Rostami L (2017) Changes in biochemical characteristics and Na and K content of caper (Capparis spinosa L.) seedlings under water and salt stress. J Agric Rural Dev Trop Subtrop 118(2):199–206

    Google Scholar 

  • Saini P, Gani M, Kaur JJ et al (2018) Reactive oxygen species (ROS): A way to stress survival in plants. In Abiotic stress-mediated sensing and signaling in plants: An omics perspective. Springer, Singapore, pp 127–153

  • Saleh J, Najafi N, Oustan S, Ghasemi-Golezani K, Aliasghrzad N (2019) Silicon affects rice growth, superoxide dismutase activity and concentrations of chlorophyll and proline under different levels and sources of soil salinity. Silicon 11(6):2659–2667

    Article  CAS  Google Scholar 

  • Sharma A, Kumar V, Shahzad B et al (2020) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39:509–531

    Article  CAS  Google Scholar 

  • Shiade SRG, Boelt B (2020) Seed germination and seedling growth parameters in nine tall fescue varieties under salinity stress. Acta Agric Scand Sect B Soil Plant Sci 70:485–494. https://doi.org/10.1080/09064710.2020.1779338

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth-promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M et al (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front Plant Sci 6:1–12

    Article  CAS  Google Scholar 

  • Sivakumar J, Prashanth JEP, Rajesh N et al (2020) Principal component analysis approach for comprehensive screening of salt stress-tolerant tomato germplasm at the seedling stage. J Biosci 45:1–11

    Article  Google Scholar 

  • Sohag AAM, Tahjib-Ul-Arif M, Brestič M, Afrin S, Sakil MA et al (2020) Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant Soil Environ 66(1):7–13

    Article  Google Scholar 

  • Tabassum R, Tahjib-Ul-Arif M, Hasanuzzaman M et al (2021) Screening salt-tolerant rice at the seedling and reproductive stages: an effective and reliable approach. Environ Exp Bot 192:104629. https://doi.org/10.1016/j.envexpbot.2021.104629

    Article  CAS  Google Scholar 

  • Taïbi K, Taïbi F, AitAbderrahim L, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South Afr J Bot 105:306–312

    Article  Google Scholar 

  • Zhang Y, Fang J, Wu X, Dong L (2018) Na+/K+ Balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L.) under salt stress. BMC Plant Biol 18:1–14. https://doi.org/10.1186/s12870-018-1586-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhani K, Mariem BF, Fardaous M, Cherif H (2012) Impact of salt stress (NaCl) on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum frutescens L.). J Stress Physiol Biochem 8(4):236–252

Download references

Funding

This research was supported by the Sari Agricultural Sciences and Natural Resources University (SANRU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyede Roghie Ghadirnezhad Shiade.

Ethics declarations

Conflict of interest

S.R. Ghadirnezhad Shiade, H. Pirdashti, M.A. Esmaeili and G.A. Nematzade declare that they have no competing interests.

Additional information

Availability of data and material

“Not applicable”.

Code availability

“Not applicable”.

Supplementary Information

10343_2022_701_MOESM1_ESM.docx

Supplementary file consisted of the physical and chemical characters of the soil table, and Analysis of variance of the effects of salinity and lines and their interaction on studied traits table

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadirnezhad Shiade, S.R., Pirdashti, H., Esmaeili, M.A. et al. Biochemical and Physiological Characteristics of Mutant Genotypes in Rice (Oryza sativa L.) Contributing to Salinity Tolerance Indices. Gesunde Pflanzen 75, 303–315 (2023). https://doi.org/10.1007/s10343-022-00701-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00701-7

Keywords

Schlüsselwörter

Navigation