Skip to main content

Advertisement

Log in

The Influence of Irrigation Strategies on Tomato Fruit Yield and Leaf Nutrient Contents

Der Einfluss von Bewässerungsstrategien auf den Ertrag von Tomaten und den Nährstoffgehalt der Blätter

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

In order to assess the effect of deficit irrigation (DI) on fruit yield and leaf nutrient contents of tomatoes in the Mediterranean climate, an open-field experiment was carried out in Bursa, Western Turkey. Experiments were conducted in randomized complete block design with three replications. Five irrigation treatments (IT) were studied: 100% (IT1, control), 75% (IT2) or 50% (IT3) evapotranspiration throughout the entire irrigation season; 100% of IT1 during the first half of the irrigation season (during 45 days from plantation) and 75% (IT3) or 50% (IT4) of IT1 during the second half of the irrigation season (about 45 days). The greatest fruit yield was obtained from IT1 treatment and significant decreases were observed in fruit yields with increasing water deficits. As compared to the control, IT4 treatment offered about 15% saving in irrigation water and a low level of reduction in yield (2.11%). Relatively high irrigation water productivity and water productivity values were obtained from IT2 and IT4 treatments. Effects of DI on water potential are also reflected in leaf nutrients. Reductions in water uptake resulted in reduced nutrient uptakes. The greatest leaf nutrient contents were observed in the IT4 treatment. Except for Mn and Cu, significant decreases in leaf nutrients with increasing water deficits were observed.

Zusammenfassung

Um die Wirkung der Defizitbewässerung (DI) auf den Fruchtertrag und den Nährstoffgehalt der Blätter von Tomaten im mediterranen Klima zu beurteilen, wurde in Bursa, Westtürkei, ein Freilandversuch durchgeführt. Die Experimente wurden in einem randomisierten vollständigen Blockdesign mit drei Wiederholungen durchgeführt. Fünf Bewässerungsbehandlungen (IT) wurden untersucht: 100 % (IT1, Kontrolle), 75 % (IT2) oder 50 % (IT3) Evapotranspiration während der gesamten Bewässerungssaison; 100 % von IT1 während der ersten Hälfte der Bewässerungssaison (während 45 Tagen nach der Pflanzung) und 75 % (IT3) oder 50 % (IT4) von IT1 während der zweiten Hälfte der Bewässerungssaison (etwa 45 Tage). Der größte Fruchtertrag wurde bei der IT1-Behandlung erzielt, und es wurden signifikante Abnahmen des Fruchtertrags mit zunehmendem Wassermangel beobachtet. Im Vergleich zur Kontrolle bot die IT4-Behandlung etwa 15 % Einsparung an Bewässerungswasser und eine geringe Ertragsminderung (2,11 %). Relativ hohe Werte der Bewässerungswasserproduktivität und Wasserproduktivität wurden bei den IT2- und IT4-Behandlungen erhalten. Die Auswirkungen von DI auf das Wasserpotenzial spiegeln sich auch in den Blattnährstoffen wider. Eine Verringerung der Wasseraufnahme führte zu einer verringerten Nährstoffaufnahme. Die höchsten Blattnährstoffgehalte wurden bei der IT4-Behandlung beobachtet. Mit Ausnahme von Mn und Cu wurden signifikante Abnahmen der Blattnährstoffe mit zunehmendem Wassermangel beobachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelhady SA, El-Azm ANAI, El-Kafafi ESH (2017) Effect of deficit irrigation levels and NPK fertilization rates on tomato growth, yield and fruits quality. Middle East J Agric Res 6(3):587–604

    Google Scholar 

  • Agada O, Siti Aishah H, Edaroyati Puteri MW, Radziah O (2018) Effect of different levels of sustained deficit ırrıgatıon on the growth, nutrient element accumulation and water use efficiency of tomato (Solanum lycopersicum L.). Int J Agric Environ Biores 3(1):199–213

    Google Scholar 

  • Agbemafle R, Owusu-Sekyere JD, Bart-Plange A (2015) Effect of deficit irrigation and storage on the nutritional composition of tomato (Lycopersicon esculentum Mill. cv. Pectomech). Croat J Food Technol Biotechnol Nutr 10(1–2):59–65

    Google Scholar 

  • Agbna GHD, She D, Liu Z, Elshaikh NA, Shao G, Timm LC (2017) Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci Hortic 222:90–101. https://doi.org/10.1016/j.scienta.2017.05.004

    Article  CAS  Google Scholar 

  • Akinci S, Losel DM (2012) Plant water-stress response and mechanisms. In: Rahman MI (ed) Water stress. Intech, Shanghai, pp 1–30 (Chinese)

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56. FAO, Rome

    Google Scholar 

  • AOAC (1980) Official methods of analysis, 13th edn. Association of Official Analytical Chemists, Washington, D.C.

    Google Scholar 

  • Campbell CR (2000) Reference sufficiency ranges for plant analysis in the southern region of the United States. Southern Cooperative Series Bulletin, p 122

    Google Scholar 

  • Doorenbos J, Kassam AH (1979) Yield response to water. FAO Irrigation and Drainage Paper. Food and Agriculture Organization of the United Nations, Rome, p 143

    Google Scholar 

  • Dursun A, Yildirim E, Turan M, Ekinci M, Kul R, Karagoz FP (2019) Determination of the effects of bacterial fertilizer on yield and growth parameters of tomato. J Agric Sci Technol 21(5):1227–1234

    Google Scholar 

  • Ektiren Y, Degirmenci H (2018) Effect of deficit irrigation applications on plant leaf nutrition elements of cotton (Gossypium hirsutum L.). KSU J Agric Nat 1(5):691–698. https://doi.org/10.18016/ksudobil.399149

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212. https://doi.org/10.1051/agro:2008021

    Article  Google Scholar 

  • Garrity PD, Watts DG, Sullivan CY, Gilley JR (1982) Moisture deficits and grain sorghum performance: evapotranspiration yield relationships. Agron J 74:815–820

    Article  Google Scholar 

  • Gercek S, Demirkaya M, Işik D (2017) Water pillow irrigation versus drip irrigation with regard to growth and yield of tomato grown under greenhouse conditions in a semi-arid region. Agric Water Manag 180:172–177. https://doi.org/10.1016/j.agwat.2016.11.012

    Article  Google Scholar 

  • Intrigliolo DS, Bonet L, Nortes PA, Puerto H, Nicolas E, Bartual J (2013) Pomegranate trees’ performance under sustained and regulated deficit irrigation. Irrigation Sci 31:959–970. https://doi.org/10.1007/s00271-012-0372-y

    Article  Google Scholar 

  • Jensen CR, Battilani A, Plauborg F, Psarras G, Chartzoulakis K, Janowiak F, Stikic R, Jovanovic Z, Li GT, Qi X, Liu F, Jacobsen SE, Andersen MN (2010) Deficit irrigation based on drought tolerance and root signaling in potatoes and tomatoes. Agric Water Manag 98:403–413. https://doi.org/10.1016/j.agwat.2010.10.018

    Article  Google Scholar 

  • Kacar B (2014) Easy to apply plant analysis—plant, soil and fertilizer analysis: 2. Ankara University Faculty of Agriculture. Nobel, Ankara, p 423

    Google Scholar 

  • Khan SH, Khan A, Litaf U, Shah AH, Khan MA, Bilal M, Ali MU (2015) Effect of drought stress on tomato cv. Bombino. J Food Process Technol 6:465. https://doi.org/10.4172/2157-7110.1000465

    Article  CAS  Google Scholar 

  • Kuscu H, Turhan A, Ozmen N, Aydinol P, Demir AO (2014) Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Hortic Environ Biotechnol 55(2):103–114

    Article  CAS  Google Scholar 

  • Kuscu H, Turhan A, Ozmen N, Aydinol P, Buyukcangaz H, Demir AO (2015) Deficit irrigation effects on watermelon (Citrullus vulgaris) in a sub-humid environment. J Animal Plant Sci 25(6):1652–1659

    CAS  Google Scholar 

  • Nahar K, Gretzmacher R (2002) Effect of water stress on nutrient uptake, yield, and quality of tomato (Lycopersicon esculentum Mill.) under subtropical conditions. Bodenkultur 53(1):45–51

    CAS  Google Scholar 

  • Pereira LS, Cordery I, Iacovides I (2009) Coping with water scarcity. Addressing the challenges. Springer, Dordrecht, p 382 https://doi.org/10.1007/978-1-4020-9579-5

    Book  Google Scholar 

  • Pereira LS, Cordery I, Iacovides I (2012) Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric Water Manag 108:39–51. https://doi.org/10.1016/j.agwat.2011.08.022

    Article  Google Scholar 

  • Pirzad A, Darvishzadeh R, Bernousi I, Hassani A, Sivritepe H (2012) Influence of water deficit on iron and zinc uptake by Matricaria chamomilla L. Chil J Agric Res 72(2):232–236

    Article  Google Scholar 

  • Rouphael Y, Cardarelli M, Schwarz D, Franken P, Colla G (2012) Effects of drought on nutrient uptake and assimilation in vegetable crops. In: Aroca R (ed) Plant responses to drought stress. Springer, Heidelberg Berlin, pp 171–195

    Chapter  Google Scholar 

  • Salk A, Arın L, Deveci M, Polat S (2008) Specialty vegetable, tomato cultivation. Namik Kemal University Faculty of Agriculture, Tekirdag, pp 285–315. ISBN 978-9944-07886-0‑3.

  • Sezen SM, Yazar A, Tekin S, Kapur B, Konuşkan D, Çolak Y, Eker S (2022) Effects of partial rootzone drying and deficit irrigation on yield and oil quality of sunflower in the Mediterranean environment. II. National Irrigation and Agricultural Structures Symposium, Ege University, Department of Farm Structures and Irrigation, Izmir, pp 1–8

    Google Scholar 

  • Sigh B, Sigh G (2004) Influence of soil water regime on nutrient mobility and uptake by Dabergia sissoo seedlings. Trop Ecol 45(2):337–340

    Google Scholar 

  • Wang X, Yun J, Shi P, Li Z, Li P, Xing Y (2019) Root growth, fruit yield and water use efficiency of greenhouse-grown tomato under different irrigation regimes and nitrogen levels. J Plant Growth Regul 38:400–415. https://doi.org/10.1007/s00344-018-9850-7

    Article  CAS  Google Scholar 

  • Xing Y, Zhang F, Zhang Y, Li J, Qiang S, Li Z, Gao X (2014) Irrigation and fertilization coupling of drip irrigation under plastic film promotes tomato’s nutrient uptake and growth. Trans Chin Soc Agric Eng 30(21):70–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Turhan.

Ethics declarations

Conflict of interest

A. Turhan, H. Kuscu and B.B. Asık declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turhan, A., Kuscu, H. & Asık, B.B. The Influence of Irrigation Strategies on Tomato Fruit Yield and Leaf Nutrient Contents. Gesunde Pflanzen 74, 1021–1027 (2022). https://doi.org/10.1007/s10343-022-00678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00678-3

Keywords

Schlüsselwörter

Navigation