Skip to main content

Advertisement

Log in

Effect of Different Nitrogen Rates and Split Applications on Growth and Productivity of Wheat Cultivars

Auswirkung von verschiedenen Stickstoffmengen und geteilter Anwendung auf Wachstum und Produktivität von Weizensorten

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Nitrogen (N) is an imperative nutrient for crop growth and development. Its application is associated with crop growth stages for optimum rate to overcome production cost. A field experiment was carried out for two consecutive years with the aim to investigate the integrative effects of N application rate and timing on the growth rate and yield contributing traits of wheat cultivars. The experiment was laid out in randomized complete block design with split plots arrangements using three replications for two consecutive years (2016–17 and 2017–18). The treatments combinations were N application rate (NAR; 0, 100, 120, 140, and 160 kg ha−1) and timing (NAT1: 100% of the applied dose at sowing; NAT2: 50% at sowing and 50% at tillering (70 days after sowing; DAS); NAT3: 25% at sowing, 50% at tillering and 25% at booting stage (100 DAS); NAT4: 25% at sowing, 25% at tillering and 50% at booting stage). Results showed that NAR and cultivars significantly affected number of days to anthesis and plant height. The days to maturity were also significantly different regarding NAR, NAT and cultivars. Concerning crop growth rate (CGR) reported at different stages (i.e. tillering, anthesis and grain filling), an increasing trend was observed at 140 kg N ha−1 and NAT3. Similarly, 140 kg N ha−1 given as NAT3 significantly affected spike length and spike weight and resulted in higher grain yield and biomass. Hence, it can be concluded that three splits N (NAT3) were more efficient for wheat variety of Pakhtunkhwa 2015 under the recent changes in climate, which has a shift in precipitation with more frequent distribution in the crop growth durations to overcome loss and increase wheat yield.

Zusammenfassung

Stickstoff (N) ist ein unverzichtbarer Nährstoff für das Wachstum und die Entwicklung von Pflanzen. Sein Einsatz richtet sich nach den Wachstumsstadien der Pflanzen, um die Produktionskosten zu senken. In zwei aufeinanderfolgenden Jahren wurde ein Feldversuch durchgeführt, um die integrativen Auswirkungen der Stickstoffausbringungsrate und des Zeitpunkts der Ausbringung auf die Wachstumsrate und die ertragssteigernden Eigenschaften von Weizensorten zu untersuchen. Der Versuch wurde in zwei aufeinanderfolgenden Jahren (2016–17 und 2017–18) in einem randomisierten vollständigen Blockversuch im Split-Plot-Design und drei Wiederholungen angelegt. Die Behandlungskombinationen waren die N‑Anwendungsrate (NAR; 0, 100, 120, 140 und 160 kg ha−1) und der Zeitpunkt (NAT1: 100 % der angewendeten Dosis bei der Aussaat; NAT2: 50 % bei der Aussaat und 50 % bei der Bestockung (70 Tage nach der Aussaat; days after sowing, DAS); NAT3: 25 % bei der Aussaat, 50 % bei der Bestockung und 25 % beim Austrieb (100 DAS); NAT4: 25 % bei der Aussaat, 25 % bei der Bestockung und 50 % beim Austrieb). Die Ergebnisse zeigten, dass die NAR und Sorten die Anzahl der Tage bis zur Anthese und die Pflanzenhöhe signifikant beeinflussten. Die Tage bis zur Reife unterschieden sich ebenfalls signifikant bezüglich NAR, NAT und Sorte. Was die Wachstumsrate (crop growth rate, CGR) in den verschiedenen Stadien (d. h. Bestockung, Anthese und Kornfüllung) betrifft, so wurde bei 140 kg N ha−1 und NAT3 ein steigender Trend beobachtet. In ähnlicher Weise wirkte sich 140 kg N ha−1, verabreicht als NAT3, signifikant auf die Ährenlänge und das Ährengewicht aus und führte zu einem höheren Kornertrag und einer höheren Biomasse. Daraus lässt sich schließen, dass die Aufteilung in drei Mengen für die Weizensorte Pakhtunkhwa 2015 unter den jüngsten Klimaveränderungen, die eine Verschiebung der Niederschläge mit häufigerer Verteilung in den Wachstumsperioden der Pflanzen mit sich bringen, effizienter ist, um Verluste zu überwinden und den Weizenertrag zu steigern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abedi T, Alemzadeh A, Kazemeini SA (2010) Effect of organic and inorganic fertilizers on grain yield and protein banding pattern of wheat. Aust J Crop Sci 4(6):384

    CAS  Google Scholar 

  • Abedi T, Alemzadeh A, Kazemeini SA (2011) Wheat yield and grain protein response to nitrogen amount and timing. Aust J Crop Sci 5(3):330

    CAS  Google Scholar 

  • Amanullah MK, Marwat KB, Shah P, Maula N, Arifullah S (2009) Nitrogen levels and its time of application influence leaf area, height and biomass of maize planted at low and high density. Pak J Bot 41(2):761–768

    Google Scholar 

  • Aminifard MH, Aroiee H, Nemati H, Azizi M, Khayyat M (2012) Effect of nitrogen fertilizer on vegetative and reproductive growth of pepper plants under field conditions. J Plant Nutr 35(2):235–242

    Article  CAS  Google Scholar 

  • Amjid SS, Bilal MQ, Nazir MS, Hussain A (2011) Biogas, renewable energy resource for Pakistan. Adv Mater Res Switz 15(6):2833–2837

    Google Scholar 

  • Ashworth AJ, Moore PA Jr., King R, Pote DH, Douglas JL, Jacobs AA (2020) Switchgrass nitrogen fertility response and nutrient cycling in a hay system. Agron J 112(3):1963–1971

    Article  CAS  Google Scholar 

  • Asseng S, Jamieson PD, Kimball B, Pinter P, Sayre K, Bowden JW, Howden SM (2004) Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crop Res 85(2–3):85–102

    Article  Google Scholar 

  • Belete F, Dechassa N, Molla A, Tana T (2018) Effect of nitrogen fertilizer rates on grain yield and nitrogen uptake and use efficiency of bread wheat (Triticum aestivum L.) varieties on the Vertisols of central highlands of Ethiopia. Agric Food Secur 7(1):78

    Article  Google Scholar 

  • Blumenthal JM, Baltensperger DD, Cassman KG, Mason SC, Pavlista AD (2008) Importance and effect of nitrogen on crop quality and health. In: Nitrogen in the environment. Academic Press, pp 51–70

    Chapter  Google Scholar 

  • Brown BD, Petrie S (2006) Irrigated hard winter wheat response to fall, spring, and late season applied nitrogen. Field Crop Res 96(2–3):260–268

    Article  Google Scholar 

  • Byjesh K, Kumar SN, Aggarwal PK (2010) Simulating impacts, potential adaptation and vulnerability of maize to climate change in India. Mitig Adapt Strateg Glob Change 15(5):413–431

    Article  Google Scholar 

  • Chaturvedi I (2006) Effect of nitrogen fertilizers on growth, yield and quality of hybrid rice (Oryza sativa L). J Cent Eur Agric 6(4):611–618

    Google Scholar 

  • Chen C, Neill K, Wichman D, Westcott M (2008) Hard red spring wheat response to row spacing, seeding rate and nitrogen. Agron J 100(5):1296–1302

    Article  Google Scholar 

  • da Moraes LBD, Freo JD, Biduski B, Elias MC, Gutkoski LC (2013) Effects of rate, time and splitting of nitrogen fertilization on the technological quality of wheat. J Food Sci Eng 3(1):9

    Google Scholar 

  • Engel R, Jones C, Wallander R (2011) Ammonia volatilization from urea and mitigation by NBPT following surface application to cold soils. Soil Sci Soc Am J 75(6):2348–2357

    Article  CAS  Google Scholar 

  • FAO (2020) Food and agriculture organization of the united nations

    Google Scholar 

  • Filip E, Stro Ńka A, Szenejko M, Pluta W (2020) Genetic diversity of Polish cultivars of common wheat (Triticum aestivum L.) based on molecular and protein markers. Not Bot Horti Agrobo 48(2):535–548

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC, Li YC (2008) The role of nutrient efficient plants in improving crop yields in the twenty first century. J Plant Nutri 31(6):1121–1157

    Article  CAS  Google Scholar 

  • Gungula DT, Togun AO, Kling JG (2007) The effects of nitrogen rates on phenology and yield components of early maturing maize cultivars. Glob J Pure Appl Sci 13(3):319–324

    CAS  Google Scholar 

  • Hameed E, Shah WA, Shad AA, Bakht J, Muhammad T (2003) Effect of different planting dates, seed rate and nitrogen levels on wheat. Asian J Plant Sci 2(6):467–474

    Article  Google Scholar 

  • Hanif M, Ali J (2014) Climate scenarios 201–2014. Publication, Inter-Cooperation Pakistan, Districts Haripur, Sawabi, Attock and Chakwal-Pakistan, p 27

    Google Scholar 

  • Harfe M (2017) Response of bread wheat (Triticum aestivum L.) varieties to N and P fertilizer rates in Ofla district, Southern Tigray, Ethiopia. Afr J Agr Res 12(19):1646–1660

    Article  CAS  Google Scholar 

  • Hussain NAZIM, Khan MB, Ahmad RIAZ (2008) Influence of phosphorus application and sowing time on performance of wheat in calcareous soils. Int J Agric Biol 10(1):399–404

    CAS  Google Scholar 

  • Ierna A, Lombardo GM, Mauromicale G (2015) Yield, nitrogen use efficiency and grain quality in durum wheat as affected by nitrogen fertilization under a Mediterranean environment. Exp Agr 52(2):314

    Article  Google Scholar 

  • Iftikhar R, Khaliq I, Ijaz M, Rashid MAR (2012) Association analysis of grain yield and its components in spring wheat (Triticum aestivum L.). Am Eur J Agri Envir Sci 12(3):389–392

    Google Scholar 

  • Jones C, Brown BD, Engel R, Horneck D, Olson-Rutz K (2013) Nitrogen fertilizer volatilization. Montana State University Extension, EBO208

    Google Scholar 

  • Khalid MS, Saleem MF, Ali S, Pervez MW, Rehman M, Hussain S, Rehman K (2014) Optimization of nitrogen fertilizer level for newly evolved wheat (Triticum aestivum) cultivars. Appl Sci Rep 3(2):83–87

    Google Scholar 

  • Khan MI, Amin M, Shah ST (2007) Agronomic evaluation of different bread wheat (Triticum aestivum L.) genotypes for terminal heat stress. Pak J Bot 39:2415–2425

    Google Scholar 

  • Leghari SJ, Wahocho NA, Laghari GM, HafeezLaghari A, MustafaBhabhan G, HussainTalpur K, Lashari AA (2016) Role of nitrogen for plant growth and development: a review. Adv Environ Biol 10(9):209–219

    Google Scholar 

  • Lehmann MF, Reichert P, Bernasconi SM, Barbieri A, McKenzie JA (2003) Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone. Geochim Cosmochim Ac 67(14):2529–2542

    Article  CAS  Google Scholar 

  • Ma G, Liu W, Li S, Zhang P, Wang C, Lu H, Kang G (2019) Determining the optimal N input to improve grain yield and quality in winter wheat with reduced apparent N loss in the North China Plain. Front Plant Sci 10:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Mäkinen H, Kaseva J, Trnka M, Balek J, Kersebaum KC, Nendel C, Kahiluoto H (2018) Sensitivity of European wheat to extreme weather. Field Crop Res 222:209–217

    Article  Google Scholar 

  • Medford AJ, Hatzell MC (2017) Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. Stud Surf Sci Catal 7(4):2624–2643

    CAS  Google Scholar 

  • MNFSR (2015) Agricultural statistics of Pak. Ministry of National Food Security and Research, Government of Pakistan, Islambad

    Google Scholar 

  • Monneveux P, Jing R, Misra S (2012) Phenotyping for drought adaptation in wheat using physiological traits. Front Physiol 3(1):429

    PubMed  PubMed Central  Google Scholar 

  • Morris TF, Murrell TS, Beegle DB, Camberato JJ, Ferguson RB, Grove J, Meisinger JJ (2018) Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron J 110(1):1–37

    Article  Google Scholar 

  • Mueller SM, Camberato JJ, Messina C, Shanahan J, Zhang H, Vyn TJ (2017) Late-split nitrogen applications increased maize plant nitrogen recovery but not yield under moderate to high nitrogen rates. Agron J 109(6):2689–2699

    Article  CAS  Google Scholar 

  • Nahar S, Lahkar L, Islam MA, Saikia D, Shandilya ZM, Vemireddy LR, Tanti B (2020) Genetic diversity based on osmotic stress tolerance-related morpho-physiological traits and molecular markers in traditional rice cultivars. Biologia 75(5):669–679

    Article  CAS  Google Scholar 

  • Naz G, Akmal M (2016) Yield and yield contributing traits of wheat varieties as affected by nitrogen rates. Sarhad J Agric 32(3):212–217

    Article  Google Scholar 

  • Ni K, Pacholski A, Kage H (2014) Ammonia volatilization after application of urea to winter wheat over 3 years affected by novel urease and nitrification inhibitors. Agr Ecol Environ 197:184–194

    Article  CAS  Google Scholar 

  • Olesen JE, Jørgensen LN, Petersen J, Mortensen JV (2003) Effects of rate and timing of nitrogen fertilizer on disease control by fungicides in winter wheat. J Agr Sci 140(1):1

    Article  CAS  Google Scholar 

  • Palosuo T, Kersebaum KC, Angulo C, Hlavinka P, Moriondo M, Olesen JE, Trnka M (2011) Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. Eur J Agron 35:103–114

    Article  Google Scholar 

  • Paunovic A, Madic M, Knezevic D, Biberdzic M (2008) Nitrogen and seed density effects on spike length and grain weight per spike in barley. Cereal Res Commun 36:75–78

    CAS  Google Scholar 

  • Pires MV, Cunha DA, Faria RM, Lindemann D (2015) Nitrogen use (in) efficiency and cereal production in Brazil: current trends and forecasts. No. 1008-2016-80064

    Google Scholar 

  • Rahman MA, Sarker MAZ, Amin MF, Jahan AHS, Akhter MM (2011) Yield response and nitrogen use efficiency of wheat under different doses and split application of nitrogen fertilizer. Bangl J Agr Res 36(2):231–240

    Article  Google Scholar 

  • Ranjan R, Yadav R (2019) Targeting nitrogen use efficiency for sustained production of cereal crops. J Plant Nutr 42(9):1086–1113

    Article  CAS  Google Scholar 

  • Shahzad K, Akmal M (2017) Yield performance of wheat under split n application rates and timing. Sarhad J Agric 33(3):350–356

    Article  Google Scholar 

  • Sher A, Naveed K, Ahmad G, Khan A, Saeed M, Masaud S (2018) Phenology and biomass production of wheat in response to micronutrients and nitrogen application. SJA 34(4):712–723

    Article  Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 5(3):291–317

    Article  Google Scholar 

  • Singh RK, Birendra KPP, Das AK, Singh SB (2016) Effect of split application of nitrogen. Int J Agric Sci 12(1):32–37

    Google Scholar 

  • Steel RGD, Torrie JH (1997) Principles and procedures of statistics. A biometrical approach, 3rd edn. McGraw Hill Book Co, New York, pp 172–177

    Google Scholar 

  • Subedi KD, Ma BL, Xue AG (2007) Planting date and nitrogen effects on grain yield and protein content of spring wheat. Crop Sci 47(1):36–44

    Article  CAS  Google Scholar 

  • Sun Y, Wang M, Mur LAJ, Shen Q, Guo S (2020) Unravelling the roles of nitrogen nutrition in plant disease defences. Int J Mol Sci 21:572

    Article  CAS  PubMed Central  Google Scholar 

  • Tilahun CB, Gebrekidan H, Kibebew KT, Tolessa DD (2017) Effect of rate and time of nitrogen fertilizer application on durum wheat (Triticum turgidum Var L. Durum) grown on Vertisols of Bale highlands, southeastern Ethiopia. Am J Res Commun 5(1):39–56

    Google Scholar 

  • Usman K, Khan EA, Yazdan F, Khan N, Rashid A, Din SU (2014) Short response of spring wheat to tillage, residue management and split nitrogen application in a Rice-Wheat system. J Integr Agr 13(12):2625–2633

    Article  Google Scholar 

  • Wahid F, Sharif M, Steinkillner S, Khan Azim M, Marwat KB (2016) Inoculation of Arbuscular mycorrhizal fungi in presence of rock phosphate improve phosphorus uptake and growth of maize. Pak J Bot 48(2):739–747

    CAS  Google Scholar 

  • Wahid F, Fahad S, Danish S, Adnan M, Yue Z, Saud S, Siddiqui MH, Brtnicky M, Hammerschmiedt T, Datta R (2020) Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture 10:334

    Article  CAS  Google Scholar 

  • Wang Q, Li F, Zhao L, Zhang E, Shi S, Zhao W, Vance MM (2010) Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland. Plant Soil 337(1–2):325–339

    Article  CAS  Google Scholar 

  • Wazir MS, Akmal M (2019) Nitrogen split application timing effect on wheat intercrop with selected species for sustainable production. Sarhad J Agric 35(1)

  • Williams RF (1946) The physiology of plant growth with special reference to the concept of net assimilation rate. Ann Bot 10(37):41–72

    Article  CAS  Google Scholar 

  • Yousaf M, Fahad S, Shah AN, Shaaban M, Khan MJ, Sabiel SAI, Wang YA, Osman KA (2014) The effect of nitrogen application rates and timings of first irrigation on wheat growth and yield. Int J Agri Inno Res 2(4):645–665

    Google Scholar 

Download references

Acknowledgements

The authors highly acknowledged the financial support of Higher Education Commission of Pakistan (HEC) in the form of NRPU project No 20-5178 for the completion of this field and lab research in the University of Agriculture Peshawar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gul Roz Khan.

Ethics declarations

Conflict of interest

G.R. Khan, M. Akmal, N. Ali, R. Goher, M.M. Anjum and F. Wahid declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, G.R., Akmal, M., Ali, N. et al. Effect of Different Nitrogen Rates and Split Applications on Growth and Productivity of Wheat Cultivars. Gesunde Pflanzen 74, 523–538 (2022). https://doi.org/10.1007/s10343-022-00628-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00628-z

Keywords

Schlüsselwörter

Navigation