Skip to main content

Advertisement

Log in

The Biological Control of Fusarium oxysporum, the Causal Agent of Potato Rot

Die biologische Bekämpfung von Fusarium oxysporum, dem Erreger der Trockenfäule bei Kartoffeln

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

This study was carried out in vivo and in vitro to search the biological control possibilities of soil borne dry rot causal agent Fusarium oxysporum causing yield losses in potato. In this study, 2 Pantoea agglomerans (BRTB and RK-92), 2 Bacillus pumilus (RK-103 and TV-67C), 7 Bacillus subtilis (BAB-140, TV-12H, TV-6F, EK‑7, TV-17C, CP‑1 and TV-125A), 3 Bacillus megaterium (TV-103B, TV-87A and TV-91C), 1 Ochrobactrum anthropi (A-16B), 1 Agrobacterium radiobacter (A-16) and 1 Bacillus thuringiensis subsp. kurstaki (BAB-410) bacterial and 2 Trichoderma harzianum (ET 4 and ET 14) fungal isolates tested efficacy in previous studies were used. In pot trial, the experiment was established with the most effective five bacterial strains (BRTB 66.22%; RK-103, 50.90%; BAB-140 50.00%; TV-103B 49.10%; TV-12H 48.65% and TV-6F 48.20%) and two fungal isolates (ET 4; 69.44%, ET 14; 66.66%). BRTB, the most effective bacterial strain, prevented completely the development of the pathogen. Based on the application time of BRTB, infection was not observed on seedlings on growing from tubers inoculated with pathogen 4 h after dipping into the bacterial solution. In storage treatments, BRTB was the most efficacy isolate when compared with others. As a result, BRTB strain of Pantoea agglomerans can be candidate in the biological control of F. oxysporum.

Zusammenfassung

Diese Studie wurde in vivo und in vitro durchgeführt, um die Möglichkeiten der biologischen Bekämpfung des Erregers der Trockenfäule im Boden, Fusarium oxysporum, zu erforschen, der bei Kartoffeln Ertragsverluste verursacht. In dieser Studie wurden 2 Pantoea agglomerans-Isolate (BRTB und RK-92), 2 Bacillus pumilus-Isolate (RK-103 und TV-67C), 7 Bacillus subtilis-Isolate (BAB-140, TV-12H, TV-6F, EK‑7, TV-17C, CP‑1 und TV-125A), 3 Bacillus megaterium-Isolate (TV-103B, TV-87A und TV-91C), ein Ochrobactrum anthropi-Isolat (A-16B), ein Agrobacterium radiobacter-Isolat (A-16), ein Bacillus thuringiensis subsp. kurstaki-Isolat (BAB-410) und 2 Pilzisolate von Trichoderma harzianum (ET 4 und ET 14) verwendet, deren Wirksamkeit in früheren Studien getestet wurde. Im Topfversuch wurde der Versuch mit den fünf wirksamsten Bakterienstämmen (BRTB 66,22 %; RK-103, 50,90 %; BAB-140 50,00 %; TV-103B 49,10 %; TV-12H 48,65 % und TV-6F 48,20 %) und zwei Pilzisolaten (ET 4; 69,44 %, ET 14; 66,66 %) durchgeführt. BRTB, der wirksamste Bakterienstamm, verhinderte die Entwicklung des Pathogens vollständig. Basierend auf der Anwendungszeit von BRTB wurde 4 h nach dem Eintauchen in die bakterielle Lösung keine Infektion an Sämlingen beobachtet, die aus mit dem Erreger inokulierten Knollen gewachsen waren. Bei den Lagerungsbehandlungen war BRTB das wirksamste Isolat im Vergleich zu den anderen. Folglich kann der BRTB-Stamm von Pantoea agglomerans ein Kandidat für die biologische Bekämpfung von F. oxysporum sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akrami M (2015) Effects of Trichoderma spp. in bio-controlling Fusarium solani and F. oxysporum of cucumber (Cucumis sativus). J App Environ Biol Sci 4(3):241–245

    Google Scholar 

  • Aktaş S (2015) Investigation of biological control possibilities of tomato pith necrosis using pgpr and bio-control bacteria in controlled condition (Atatürk University Natural Sciences Institute, Master Thesis, 61 p. (in Turkish))

    Google Scholar 

  • Ali H, Nadarajah K (2014) Evaluating the efficacy of Trichoderma spp. and Bacillus substilis as biocontrol agents against Magnaporthe grisea in rice. Aust J Crop Sci 8(9):1324–1335

    Google Scholar 

  • Altomare C, Norvell WA, Bjbrkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plantgrowth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933. https://doi.org/10.1128/aem.65.7.2926-2933.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anonymous (2019) Anonymous. http://www.zmo.org.tr/genel/bizden_detay.php?kod=31082&tipi=17&sube=0. Accessed 15 June 2019

  • Aşkın A, Katırcıoğlu YZ (2008) Determination of pathogenicity of the precipitating damping off disease in tomato seedlings in the provinces of Ayaş, Beypazarı and Nallıhan in Ankara. Bitki Koruma Bülteni 48(2):49–59 (in Turkish)

    Google Scholar 

  • Bae SJ, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, Hong SB, Seo H, Bae DW, Bae I, Kim JJ, Bae H (2016) Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control 92:128–138. https://doi.org/10.1016/j.biocontrol.2015.10.005

    Article  CAS  Google Scholar 

  • Barari H (2016) Biocontrol of tomato Fusarıum wilt by Trichoderma species under in vitro and in vivo conditions. Cercetări Agron În Moldova 49(1):91–98. https://doi.org/10.1515/cerce-2016-0008

    Article  Google Scholar 

  • Basumatary M, Dutta BK, Singha DM (2015) Some in vitro observations on the biological control of Sclerotium rolfsii, a serious pathogen of various agricultural crop plants. J Agric Vet Sci 8(2):87–94. https://doi.org/10.9790/2380-08228794

    Article  Google Scholar 

  • Batool A, Khan MA, Farooq J, Mughal SM, Iftikhar Y (2011) ELISA-based screening of potato germplasm against potato leaf roll virus. J Agric Res 49:57–63

    Google Scholar 

  • Berg G, Knaape C, Ballin G, Seidel D (1994) Biological control of Verticillium dahliae KLEB by naturally occurring rhizosphere bacteria. Arch Phytopathol Plant Pro 29:249–262

    Article  Google Scholar 

  • Cakmakcı R, Erman M, Kotan R, Cıg F, Karagöz K, Sezen M (2010) Growth promotion and yield enhancement of sugar beet and wheat by application of plant growth promption rhizobacteria. In: Proceedings of international conference on organic agriculture in scope of environmental problems Famagusta, Cyprus Island, 2010, pp 198–202

    Google Scholar 

  • Camlıca E, Tozlu E (2019) Biological Control of Alternaria solani in tomato. Fresenius Environ Bull 28(10):7092–7100. https://doi.org/10.3390/ijms20081950

    Article  CAS  Google Scholar 

  • Chen J, Zhou L, Ud Din I, Arafat Y, Li Q, Wang J, Wu T, Wu L, Wu H, Quin X, Raj Pokhrel G, Lin S, Lin W (2021) Antagonistic activity of Trichoderma spp. against Fusarium oxysporum in rhizosphere of radix pseudostellariae triggers the expression of host defense genes and improves its growth under long-term monoculture system. Front Microbiol 12:579920

    Article  Google Scholar 

  • Eckert JW, Ogawa JM (1988) The chemical control of postharvest diseases: deciduous fruit, berries, vegetables and root/tuber crops. Annu Rev Phytopathol 26:433–469

    Article  CAS  Google Scholar 

  • Ekinci M, Turan M, Yıldırım E, Güneş A, Kotan R, Dursun A (2014) Effect of plant growth promoting rhizobacteria on growth, nutrient, organic acid, amino acid and hormone content of cauliflower (Brassica oleracea L. var. botrytis) transplants. Acta Sci Pol Hortorum Cultus 13(6):71–85

    Google Scholar 

  • Erdoğan O (2015) Biological control of soil-born fungal pathogens on cotton by fluorescent Pseudomonads. Turkish J Agric Nat Sci 2(3):268–275 (in Turkish with an abstract in English)

    Google Scholar 

  • Erman M, Kotan R, Çakmakçı R, Çığ F, Karagöz K, Sezen M (2010) Effect of nitrogen fixing and phosphate-solubilizing Rhizobacteria isolated from Van Lake Basin on the growth and quality properties in wheat and sugar beet. In: Proceedings of Turkey IV. Organic farming symposium Erzurum, Turkey, 2010, pp 325–329

    Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Göktürk T, Tozlu E, Kotan R (2018) Prospects of entomopathogenic bacteria and fungi for biological control of Ricania simulans (Walker, 1851) (Hemiptera: Ricaniidae). Pak J Zool 50(1):75–82. https://doi.org/10.17582/journal.pjz/2018.50.1.75.82

    Article  Google Scholar 

  • Guinebretiere MH, Nguyen C, Morrison N, Reich M, Nicot P (2000) Isolation and characterization of antagonists for the biocontrol of the postharvest wound pathogen Botrytis cinerea on strawberry fruits. Food Prot 63:386–394

    Article  CAS  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathol 96:190–194. https://doi.org/10.1094/PHYTO-96-0190

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Lorito IM (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev 2:43–56. https://doi.org/10.1038/nrmicro797

    Article  CAS  Google Scholar 

  • Hong CX, Michailides TJ, Holtz BA (1998) Effects of wounding, inoculum density and biological control agents on postharvest brown rot of stone fruits. Plant Dis 8:1210–1216

    Article  Google Scholar 

  • Howel CR (2003) Mechanisms employed by Trichoderma species in the of biological control disease the history and evolution current concepts. Plant Dis 87:4–10. https://doi.org/10.1094/PDIS.2003.87.1.4

    Article  Google Scholar 

  • Imriz G, Özdemir F, Topal İ, Ercan B, Taş M, Yakışır E, Okur O (2014) Plant growth promoting rhizobacteria (PGPR) in plant production and their mechanism. Elektronik Mikrobiyoloji Dergisi 2:1 (in Turkish with an abstract in English)

    Google Scholar 

  • Ippolito A, Nigro F (2000) Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Prot 19:715–723

    Article  Google Scholar 

  • Islam A, Nain Z, Alam K, Banu NA, Islam R (2018) In vitro study of biocontrol potential of rhizospheric Pseudomonas aeruginosa against Fusarium oxysporum f.sp. cucumerinum. Egypt J Biol Pest Control 28:90. https://doi.org/10.1186/s41938-018-0097-1

    Article  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruit. Annu Rev Phytopathol 40:411–441

    Article  CAS  Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98. https://doi.org/10.1016/j.micres.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  • John RP, Tyagi RD, Prevost D, Brar SK, Pouler S, Surampalli RY (2010) Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot 29:1452. https://doi.org/10.1016/j.cropro.2010.08.004

    Article  Google Scholar 

  • Joseph A, Igbinosa OB, Alori ET, Ademiluyi BO, Aluko AP (2017) Effectiveness of Pseudomonas species in the management of tomato early blight pathogen Alternaria solani. Afr J Microbiol Res 11(23):972–976. https://doi.org/10.5897/EJMR2017.8564

    Article  CAS  Google Scholar 

  • Karagöz K, Kotan R (2010) Effects of some plant growth promoting bacteria on growth of lettuce and Bacterial leaf spot disease. Turk J Biol Control 1(2):165–179

    Google Scholar 

  • Klement Z, Rudolph K, Sands D (1964) Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Methods in Phytobacteriology. Phytopathology 54:474–477

    Google Scholar 

  • Kotan R, Dikbaş N, Bostan H (2009) Biological control of postharvest disease caused by Aspergillus flavus on stored lemon fruits. Afr J Biotechnol 8(2):209–214

    Google Scholar 

  • Kotan R, Sahin F, Ala A (2005) Identificationand pathogenicity of bacteria isolated from pomefruit strees in eastern Anatolia region of Turkey. J Plant Dis Prot 113(1):8–13

    Google Scholar 

  • Lamo FJ, Takken FLW (2020) Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Front Plant Sci 11:37. https://doi.org/10.3389/fpls.2020.00037

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee T, Park D, Kim K, Lim SM, Yu NH, Kim S, Kim HY, Jung KS, Jang JY, Park JC, Ham H, Lee S, Hong SK, Kim JC (2017) Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against mycotoxigenic Fusarium species. Plant Pathol J 33:499–507

    Article  CAS  Google Scholar 

  • Liu W, Chen Z, Zhang T, Lu C, Dong D, Wu H, Zhang D (2014) Application of Pantoea agglomerans strain Z01 to control Fusarium wilt and its effect on the quality parameters of rockets. Ann Microbiol 64(3):1443–1446. https://doi.org/10.1007/s13213-013-0735-5

    Article  CAS  Google Scholar 

  • Mohammadi P, Tozlu E, Kotan R, Kotan Şenol M (2017) Potential of some bacteria for biological control of postharvest citrus green mould caused by Penicillium digitatum. Plant Prot Sci 53(3):134–143. https://doi.org/10.17221/55/2016-PPS

    Article  CAS  Google Scholar 

  • Özer N, Soran H (1991) Fusarium Genus and Fusarium species ısolated from the cultivated plants in Turkey. J Turkish Phytopathol 20(2–3):69–80

    Google Scholar 

  • Parmar HJ, Bodar NP, Lakhani HN, Patel SV, Umrania VV, Hassan MM (2015) Production of lytic enzymes by Trichoderma strains during in vitro antagonism with Sclerotium rolfsii, the causal agent of stem rot of groundnut. Afr J Microbiol Res 9(6):365–372. https://doi.org/10.5897/AJMR2014.7330

    Article  CAS  Google Scholar 

  • Pimenta RS, Silva FL, Silva JFM, Morais PB, Braga DT, Rosa CA, Corrêa A (2008) Biological control of Penicillium italicum, P. digitatum and P. expansum by the predacious yeast Saccharomycopsis schoenii on oranges. Braz J Microbiol 39(1):85–90

    Article  Google Scholar 

  • Sadfi N, Chérif M, Fliss I, Boudabbous A, Antoum H (2001) Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol 83(2):101–118

    CAS  Google Scholar 

  • Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J (2016) Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum. Biol Control 94:37–46. https://doi.org/10.1016/j.biocontrol.2015.12.001

    Article  CAS  Google Scholar 

  • Sasser M (1990) “Tracking” a strain using the microbial identification system. MIDI technical note, vol 102. MIDI, Newark

    Google Scholar 

  • Skidmore AM, Dickinson CM (1976) Colony Interactions and hyphal ınterference between sepatoria nodorum and phylloplane fungi. Trans Brit Mycol Soc 66:57–64

    Article  Google Scholar 

  • Tekiner N, Kotan R, Tozlu E, Dadaşoğlu F (2020) Biological control of Botrytis cinerea and Alternaria alternata with bioagent bacteria and fungi under in vitro conditions. Fresenius Environ Bull 29(1):640–649

    CAS  Google Scholar 

  • Tekiner N, Tozlu E, Kotan R, Dadaşoğlu F (2018) Biological control of Coniella granati Saccardo in pomegranate. In: Proceedings of 1st international conference on food, agriculture and animal sciences (ICOFAAS) Siirt, Turkey, 2018, p 119

    Google Scholar 

  • Tekiner N, Tozlu E, Kotan R, Dadaşoğlu F (2019a) Determination of some biological control agents against Alternaria fruit rot in quince. Alinteri J Agr Sci 34(1):25–31

    Google Scholar 

  • Tekiner N, Tozlu E, Kotan R (2019b) Investigation of biological control possibility of Anthracnose disease agent, Colletotrichum gloeosporioides, on orange. Atatürk Univ J Agric Fac 50(3):282–291

    Google Scholar 

  • Thonglem K, Plikomol A, Pathom-aree W (2007) Growth inhibition of Penicillium digitatum by antagonistic microorganisms isolated from various parts of orange tree. Maejo Int J Sci Technol 1(2):208–215

    Google Scholar 

  • Torres R, Nunes C, Garcia JS, Abadias M, Vinas I, Manso T, Olmo M, Usall J (2007) Application of Pantoea agglomerans CPA‑2 in combination with heated sodium bicarbonate solutions to control the major postharvest diseases affecting citrus fruit at several mediterranean locations. Eur J Plant Pathol 118:73–83

    Article  CAS  Google Scholar 

  • Tozlu E (2016) Biological control of carrot sour rot (Geotrichum candidum Link) by some bacterial biocontrol agents. Atatürk Univ J Agric Fac 47(1):1–9

    Google Scholar 

  • Tozlu E, Mohammadi P, Kotan Senol M, Nadaroglu H, Kotan R (2016) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mould disease in red cabbage by some bacteria. Plant Prot Sci 52(3):188–198. https://doi.org/10.17221/96/2015-PPS

    Article  CAS  Google Scholar 

  • Tozlu E, Tekiner N, Dikbaş N, Kotan R (2019) Biological control of post harvest spoil age in fresh mandarins (citrus reticulata Blanco) fruits using bacteria during storage. Erwerbs-Obstbau 61:157–164. https://doi.org/10.1007/s10341-018-0412-8

    Article  Google Scholar 

  • Tozlu E, Tekiner N, Kotan R (2018a) Screening of Trichoderma harzianum Rifai (1969) ısolates of domestic plant origin against different fungal plant pathogens for use as biopesticide. Fresenius Environ Bull 27(6):4232–4238

    CAS  Google Scholar 

  • Tozlu E, Tekiner N, Kotan R, Örtücü S (2018b) Investigation on the biological control of Alternaria alternata. Indian J Agric Sci 88(8):93–99

    Google Scholar 

  • Valenzuela NL, Angel DN, Ortiz DT, Rosas RA, Garcia CFO, Santos MO (2015) Biological control of anthracnose by postharvest application of Trichoderma spp. on Maradol papaya fruit. Biol Control 91(12):88–93. https://doi.org/10.1016/j.biocontrol.2015.08.002

    Article  Google Scholar 

  • Varol AF (2008) Investigation of the effectiveness of some disinfectants against tomato seed root rotors (Pythium spp., Rhizoctonia spp., Fusarium spp.) (Ege Univ Natural Science Institue, Department of Plant Protection, Master Thesis pp 71)

    Google Scholar 

  • Vatankhah M, Riseh RS, Eskandari MM, Sedaghati EA, Alaei H, Afzali H (2019) Biological control of Fusarium dry rot of potato using some probiotic bacteria. J Agr Sci Tech 21(5):1301–13012

    Google Scholar 

  • Vinale FR, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary school metabolites produced by two commercial Trichoderma strains active againts different phytopathogens. Lett Appl Microbiol 43:143–148. https://doi.org/10.1111/j.1472-765X.2006.01939.x

    Article  CAS  PubMed  Google Scholar 

  • Viriyasuthee V, Saepaisan S, Saksirirat W, Gleason ML, Chen RS, Jogloy S (2019) Effective plant ages for screening for field resistance to alternaria leaf spot (caused by Alternaria spp.) under natural infection in jerusalem artichoke (Helianthus tuberosus L.). Agronomy 9:754. https://doi.org/10.3390/agronomy9110754

    Article  CAS  Google Scholar 

  • Wang H, Yan Y, Wang J, Zhang H, Qi W (2012) Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. Plos One 7(1):e29452. https://doi.org/10.1371/journal.pone.0029452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yıldız F, Kınay P, Yıldız M, Sen F, Karacalı I (2005) Effects of preharvest applications of CaCl2, 2,4‑D and benomyl and postharvest hot water, yeast and fungicide treatments on development of decay on Satsuma mandarins. J Phytopathol 153:94–98

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr. Recep KOTAN for providing the bacterial strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Tozlu.

Ethics declarations

Conflict of interest

G. Çakar and E. Tozlu declare that they have no competing interests.

Ethical standards

This study is part of Gözdenur ÇAKAR’s master thesis accepted by Atatürk University Graduate School of Natural and Applied Sciences.

Additional information

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakar, G., Tozlu, E. The Biological Control of Fusarium oxysporum, the Causal Agent of Potato Rot. Gesunde Pflanzen 74, 305–315 (2022). https://doi.org/10.1007/s10343-021-00610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00610-1

Keywords

Schlüsselwörter

Navigation