Skip to main content

Advertisement

Log in

Effect of Sodium Nitroprusside on Physiological Traits and Grain Yield of Oilseed Rape (Brassica napus L.) Under Different Irrigation Regimes

Wirkung von Natriumnitroprussid auf physiologische Eigenschaften und Kornertrag von Raps (Brassica napus L.) bei unterschiedlichen Bewässerungsmethoden

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Drought stress is the main factor limiting the growth and crop yield in most regions; thus, reducing the effects of drought stress is a research priority worldwide. The aim of this experiment was to evaluate the effect of sodium nitroprusside (SNP) on physiological traits and grain yield of oilseed rape under drought stress. Two field experiments with three irrigation levels (I1: full irrigation (control), I2: irrigation cut-off at the beginning of pod development, and I3: irrigation cut-off at the beginning of grain filling) and SNP foliar applications with four levels (0, 100, 200 and 300 μM) were conducted during the 2015–2017 growing seasons. The results indicated that applying 200 and 300 μM of SNP significantly increased antioxidant enzymes, total chlorophyll, and proline at all levels of drought stress in comparison with applying zero and 100 μM of SNP. Moreover, applying SNP increased grain yield via improving the biochemical traits of the plant under stress and non-stress conditions. Comparison results of the average test of two years showed that the application of 200 and 300 μM SNP increased grain yield to 11.2 and 15.1% in control conditions, 33.6 and 36.7% in I2 and 20.9 and 40.6% in I1 compared to the control. Generally, the results indicated that applying SNP reduced the effects of water-deficit stress on oilseed rape.

Zusammenfassung

Trockenstress ist in den meisten Regionen der Hauptfaktor, der das Wachstum und die Ernteerträge einschränkt; daher ist die Verringerung der Auswirkungen von Trockenstress weltweit ein Forschungsschwerpunkt. Ziel dieses Versuchs war es, die Wirkung von Natriumnitroprussid (SNP) auf physiologische Merkmale und den Kornertrag von Raps unter Trockenstress zu bewerten. Zwei Feldversuche mit drei Bewässerungsstufen (I1: Vollbewässerung (Kontrolle), I2: Bewässerungsunterbrechung zu Beginn der Hülsenentwicklung und I3: Bewässerungsunterbrechung zu Beginn der Kornfüllung) und SNP-Blattapplikationen in vier Konzentrationen (0, 100, 200 und 300 μM) wurden während der Vegetationsperioden 2015–2017 durchgeführt. Die Ergebnisse zeigten, dass die Anwendung von 200 und 300 μM SNP die antioxidativen Enzyme, das Gesamtchlorophyll und Prolin auf allen Ebenen des Trockenstresses im Vergleich zur Anwendung von 0 µM und 100 μM SNP deutlich erhöhte. Darüber hinaus erhöhte die Anwendung von SNP den Kornertrag durch Verbesserung der biochemischen Eigenschaften der Pflanze unter Stress- und Nichtstressbedingungen. Die Vergleichsergebnisse des durchschnittlichen Versuchs über zwei Jahre zeigten, dass die Anwendung von 200 und 300 μM SNP den Kornertrag im Vergleich zur Kontrolle auf 11,2 und 15,1 % unter Kontrollbedingungen, 33,6 und 36,7 % unter I2 und 20,9 und 40,6 % unter I1 erhöhte. Generell zeigten die Ergebnisse, dass die Anwendung von SNP die Auswirkungen von Wassermangelstress auf Raps reduzierte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought stress in ten cultivars of Oilseed Rape (Brassica napus L.). Czech J Genet Plant Breed 46(1):27–34

    Article  CAS  Google Scholar 

  • Ahmadi A, Ehsanzade, p, Jabari F (2009) Introduction to plant physiology, 3rd edn. vol 1. Institute of printing and publishing, university of Tehran, (216 pages)

    Google Scholar 

  • Ahmadizadeh M, Valizadeh M, Zaefizadeh M, Shahbazi H (2011) Antioxidative protection and electrolyte leakage in durum wheat under drought stress condition. J Appl Sci Res 7(3):236–246

    CAS  Google Scholar 

  • Antolin CA, Muro I, Sánchez-Díaz M (2010) Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Environ Exp Bot 68:75–82

    Article  Google Scholar 

  • Arab S, Baradaran Firuzabadi M, Asghari HR (2016) Effect of foliar application of ascorbic acid and sodium nitroprusside on photosynthetic pigments and some trais of spring safflower under low irrigation stress. Plant Prod 38(4):93–104

    Google Scholar 

  • Aranjuelo I, Molero G, Gorka E, Jean CA, Salvador N (2011) Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J Exp Bot 62(1):111–123

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutases: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278

    Article  CAS  Google Scholar 

  • Chavoushi M, Najafi F, Salimi A, Angaj A (2019) Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Ind Crops Prod 134:168–176

    Article  CAS  Google Scholar 

  • Chavoushi M, Najafi F, Salimi A, Angaj A (2020) Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress. Sci Hortic 259:108–121

    Article  Google Scholar 

  • Del Rio LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    Article  PubMed  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101

    Article  CAS  Google Scholar 

  • Diner BA, Petrouleas V (1990) Formation by NO of nitrosyl adducts of redox components of the photosystem II reaction center. II: Evidence that HCO3-/CO2 binds to the acceptor-side non-heme iron. Biochim Biophys Acta 1015:141–149

    Article  CAS  Google Scholar 

  • Dong YJ, Wang ZL, Zhang JW, Liu S, He ZL, He MR (2015) Interaction effects of nitric oxide and salicylic acid in alleviating salt stress of Gossypium hirsutum L. J Soil Sci Plant Nutr 15(3):561–573

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Rehman H (2009) Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agro Crop Sci 195:254–261

    Article  CAS  Google Scholar 

  • Fathi-Amirkhiz A, Dehaghi MA, Modares-Sanavi SAM, Reza-Zadeh AR, Heshmati S (2011) Effect of iron application on enzymic activity, grain yield and oil content of Safflower under water deficit conditions. J Crop Sci 13(3):452–465

    Google Scholar 

  • Fu J, Huang B (2001) Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot 45:105–114

    Article  CAS  PubMed  Google Scholar 

  • Ghaffari G, Toorchi M, Aharizad S, Shakiba MR (2011) Evaluation of traits related to water deficit stress in winter rapeseed cultivars. J Environ Res Technol 1:338–350

    Google Scholar 

  • Habibi GH (2013) Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agric Slovenica 101(1):31–39

    CAS  Google Scholar 

  • Hayat S, Yadav S, Alyemeni MN, Ahmad A (2014) Effect of sodium nitroprusside on the germination and antioxidant activities of tomato (Lycopersicon esculentum Mill). Bulg J Agric Sci 20(1):140–144

    Google Scholar 

  • Hemeda HM, Kelin BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetables extracts. J Food Science 55:184–185

    Article  CAS  Google Scholar 

  • Hosseini SM, Hasanloo T, Mohammadi S (2015) Physiological characteristics, antioxidant enzyme activities, and gene expression in 2 spring canola (Brassica napus L.) cultivars under drought stress conditions. Turk J Agric For 39(3):413–420

    Article  CAS  Google Scholar 

  • Jung S (2004) Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Sci 166:459–466

    Article  CAS  Google Scholar 

  • Leshem YY, Haramaty E, Liuz D, Mali KZ, Safer Y, Riotman L (2017) Effect of stress nitric oxide: interaction between cholorophyll florescence, galactolipid fluidity and lipoxygenase activity. Plant Physiol Biochem 35:573–579

    Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • Liu F, Guo FQ (2013) Nitric oxide deficiency accelerates chlorophyll breakdown and stability loss of thylakoid membranes during dark-induced leaf senescence in Arabidopsis. Plos One 8(2):e56345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Liu Y, Guo K, Fan D, Li G, Zheng Y, Yang R (2011) Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ Exp Bot 71(2):174–183

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. J Plant Physiol 127:1781–1787

    Article  CAS  Google Scholar 

  • Lu S, Su W, Li H, Guo Z (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiol Biochem 47:132–138

    Article  CAS  PubMed  Google Scholar 

  • Magdy AS, Hazem MM, Alia AM, Alshaima AI (2012) Effect of sodium nitroprusside, putrescine and glycine betaine on alleviation of drought stress in cotton plant. Am J Agric Environ Sci 12(9):1252–1265

    Google Scholar 

  • Majeed S, Nawaz F, Naeem M, Ashraf YM (2018) Effect of exogenous nitric oxide on sulfur and nitrate assimilation pathway enzymes in maize (Zea mays L.) under drought stress. Acta Physiol Plantarum 40:206–219

    Article  Google Scholar 

  • Malik AA, Li WG, Lou LN, Weng JH, Chen JF (2010) Biochemical/physiological characterization and evaluation of in vitro salt tolerance in cucumber. Afr J Biotechnol 9(22):3284–3292

    CAS  Google Scholar 

  • Mohasseli V, Sadeghi S (2019) Exogenously applied sodium nitroprusside improves physiological attributes and essential oil yield of two drought susceptible and resistant specie of Thymus under reduced irrigation. Ind Crops Prod 130:130–136

    Article  CAS  Google Scholar 

  • Molaahmad Nalousi, A. 2012. Effect of nitric oxide (NO) on reducing induced oxidative damage due to drought stress in two grass species. Master thesis, School of agriculture, University of Gilan

  • Nabaei M, Amooaghaie R (2019) Interactive effect of melatonin and sodium nitroprusside on seed germination and seedling growth of catharanthus roseus under cadmium stress. Russ J Plant Physiol 66:128–139

    Article  CAS  Google Scholar 

  • Nasibi F (2011) Study of the effect of different concentrations of sodium nitoprusside (SNP) in mitigating oxidative damage due to drought stress in tomato plants. Plant Biol 3(9):63–74

    Google Scholar 

  • Nath M, Bhatt D, Prasad R, Tuteja N (2017) Reactive oxygen species (ROS) metabolism and signaling in plant-mycorrhizal association under biotic and abiotic stress conditions. In: Mycorrhiza-eco-physiology, secondary metabolites, nanomaterials, vol 51. Springer, Cham, pp 223–232

    Chapter  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  PubMed  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22(1):53–65

    Article  CAS  PubMed  Google Scholar 

  • Peltzer D, Dreyer E, Polle A (2002) Differential temperature dependencies of antioxidative enzymes in two contrasting species. Fagus sylvatica and Coleus blumei. Plant Physiol Biochem 40:141–150

    Article  CAS  Google Scholar 

  • Rezapour R, Ganjali A, Abrishmchi P (2019) Investigation of the interaction effect of sodium nitroprusside (SNP) and salinity stress on some physiological and biochemical properties of rapseed. J Plant Res 32(2):297–306

    Google Scholar 

  • Rostami AA, Rahemi M (2013) Screening drought tolerance in caprifig varieties in accordance to responses of antioxidant enzymes. World Appl Sci J 21(8):1213–1219

    CAS  Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long-term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S (2016) Role of sugars under abiotic stress. Plant Physiol Biochem 109:54–61

    Article  CAS  PubMed  Google Scholar 

  • Sanakis Y, Goussias C, Mason RP, Petrouleas V (1997) NO interacts with thetyrosine radical YD of photosystem II to form an iminoxyl radical. Biochemistry 36:1411–1417

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Goussias C, Petrouleas V, Rutherford AW (2002) Reduction of the Mncluster of the water-oxidizing enzyme by nitric oxide: formation of an S‑2 state. Biochemistry 41:3057–3064

    Article  CAS  PubMed  Google Scholar 

  • Shan C, He F, Xu G, Han R, Liang Z (2011) Nitric oxide is involved in the regulation of ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Biol plant 56:187–191

    Article  Google Scholar 

  • Shehab GG, Ahmed OK, El-Beltagi HS (2010) Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Notulae Bot Hort Agrobot Cluj Napoca 38(1):139–148

    CAS  Google Scholar 

  • Singh-Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  Google Scholar 

  • Svetleva D, Krastev V, Dimova D, Mitrovska Z, Miteva D, Parvanova P, Chankova S (2012) Drought tolerance of Bulgarian common bean genotypes, charactrized by some biochemical markers for oxidative stress. J Cent Eur Agric 13(2):349–361

    Article  Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6(84):1–20

    Google Scholar 

  • Tu J, Shen W, Xu L (2003) Regulation of nitric acid on the aging process of wheat leaves. Acta Bot Sinica 45:1055–1062

    CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 63:515–523

    Article  Google Scholar 

  • Wink DA, Cook JA, Pacelli R, Liebmann J, Krishna MC, Mitchell JB (1995) Nitric oxide (NO) protects against cellular damage by reactive oxygen species. Toxicol Lett 82–83:221–226

    Article  PubMed  Google Scholar 

  • Wodala B, Deák Z, Vass I, Erdei L, Altorjay I, Horváth F (2008) In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves. Plant Physiol 146:1920–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav A, Suri VK, Kumar A, Choudhary AK, Meena AL (2015) Enhancing plant water relations, quality, and productivity of Pea (Pisum sativum L.) through arbuscular mycorrhizal fungi, inorganic phosphorus, and irrigation regimes in a Himalayan acid alfisol. Commun Soil Sci Plant Anal 46(1):80–93

    Article  CAS  Google Scholar 

  • Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A (2017) Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Front Plant Sci 8:1–10

    Article  Google Scholar 

  • Zhang H, Li YH, Hu LY, Wang SH, Zhang FQ, Hu KD (2008) Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminumstress. Russ J Plant Physiol 55:469–474

    Article  CAS  Google Scholar 

  • Zhang Z, Pang X, Duan X, ZLJiang JY (2005) Role of peroxidase in anthocyanine degradation in litchi fruit pericarp. Food Chem 90:47–52

    Article  Google Scholar 

  • Zhao Z, Chen G, Zhang C (2001) Interaction between reactive oxygen and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Aust J Plant Physiol 28:1055–1061

    CAS  Google Scholar 

  • Zhou R, Yu X, Ottosen CO, Rosenqvist E, Zhao L, Wang Y, Wu Z (2017) Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol 17(1):1–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Sohrabi.

Ethics declarations

Conflict of interest

M. Sheikhaliyan, Y. Sohrabi, F. Hossainpanahi and A. ShiraniRad declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhaliyan, M., Sohrabi, Y., Hossainpanahi, F. et al. Effect of Sodium Nitroprusside on Physiological Traits and Grain Yield of Oilseed Rape (Brassica napus L.) Under Different Irrigation Regimes. Gesunde Pflanzen 74, 111–123 (2022). https://doi.org/10.1007/s10343-021-00592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00592-0

Keywords

Schlüsselwörter

Navigation