Skip to main content

Advertisement

Log in

Comparison of the Salt Stress Tolerance of Promising Turkish Winter Squash (Cucurbita maxima Duch.) and Pumpkin (Cucurbita moschata Duch.) Lines and Interspecific Hybrids

Vergleich der Salzstresstoleranz vielversprechender türkischer Winterkürbis- (Cucurbita maxima Duch.) und Kürbis (Cucurbita moschata Duch.)-Linien sowie interspezifischer Hybriden

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate several selected Cucurbita genotypes for their salt resistance in a rootstock breeding program for grafted watermelon seedling production. Specifically, changes in the relative water content (RWC), leaf area (LA), total chlorophyll content (TCC) and proline concentration (PC) of a commercial cultivar (G32 code), two promising winter squash (G12 and G13 of Cucurbita maxima Duch.) lines, six pumpkin (G3, G27, G28, G29, G30 and G31 of Cucurbita moschata Duch.) lines, and four C. maxima × C. mochata hybrids (G14, G15, G40 and G42), were investigated with a control treatment and four levels of salt stress (4, 8, 12 and 16 dS/m). In this study, Cucurbita cultivars which showed significant differences according to RWC, LA, TCC and PC at least significant difference (LSD) tests (P < 0.05) and had salinity sensitivity index (SSI) value lower than 20%, were assessed as salt tolerant genotypes. The salt tolerant genotypes were grouped with principal component analysis (PCA) in each salt level. At the end of the study, all genotypes for all characteristics were generally tolerant at 4 dS/m salinity level. The G3, G12, G13, G14, G29 and G42 genotypes were resistant at 8 dS/m salinity, while the G15, G31, G32 and G40 were the most resistant genotypes at 12 and 16 dS/m. In conclusion, the selection of more salt resistant cultivars in rootstock breeding programs should be a priority to maintain growth performance in saline environments.

Zusammenfassung

Ziel dieser Studie war es, mehrere ausgewählte Cucurbita-Genotypen auf ihre Salzresistenz in einem Wurzelstock-Zuchtprogramm für die Produktion von veredelten Wassermelonen-Setzlingen zu untersuchen. Insbesondere wurden Veränderungen des relativen Wassergehalts (RWC), der Blattfläche (LA), des Gesamtchlorophyllgehalts (TCC) und der Prolinkonzentration (PC) untersucht; und zwar bei einer kommerziellen Sorte (Code G32), zwei vielversprechenden Winterkürbislinien (G12 und G13 von Cucurbita maxima Duch.), sechs Kürbislinien (G3, G27, G28, G29, G30 und G31 von Cucurbita moschata Duch.) und vier C. maxima × C. mochata-Hybriden (G14, G15, G40 und G42) bei vier Salzstresslevel (4, 8, 12 und 16 dS/m) und verglichen mit einer Kontrollbehandlung. In dieser Studie wurden die Cucurbita-Sorten, die signifikante Unterschiede in Bezug auf RWC, LA, TCC und PC im LSD-Test (P < 0,05) aufwiesen und einen Salzempfindlichkeitsindex (SSI) von weniger als 20 % hatten, als salztolerante Genotypen bewertet. Die salztoleranten Genotypen wurden mithilfe der Hauptkomponentenanalyse (PCA) in jeder Salzstufe gruppiert. Am Ende der Studie waren alle Genotypen für alle Merkmale bei einem Salzgehalt von 4 dS/m generell tolerant. Die Genotypen G3, G12, G13, G14, G29 und G42 waren bei einem Salzgehalt von 8 dS/m resistent, während die Genotypen G15, G31, G32 und G40 bei 12 und 16 dS/m am resistentesten waren. Zusammenfassend lässt sich sagen, dass die Selektion salzresistenterer Sorten in den Wurzelstock-Züchtungsprogrammen Priorität haben sollte, um die Wachstumsleistung in salzhaltiger Umgebung zu erhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelaziz ME, Abdelsattar M, Abdeldaym EA, Atia MA, Mahmoud AWM, Saad MM, Hirt H (2019) Piriformospora indica alters Na+ /K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Sci Hortic 256:108532

    CAS  Google Scholar 

  • Abdi S, Abbaspur N, Avestan S, Barker AV (2016) Physiological responses of two grapevine (Vitis vinifera L.) cultivars to Cycocel TM treatment during drought. J Hortic Sci Biotechnol 91:211–219

    CAS  Google Scholar 

  • Alam A, Ullah H, Attia A, Datta A (2020) Effects of salinity stress on growth, mineral nutrient accumulation and biochemical parameters of seedlings of three citrus rootstocks. Int J Fruit Sci 20(4):786–804

    Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al Rubaye OAM, Yetisir H, Ulas F, Ulas A (2021) Enhancing salt stress tolerance of different pepper (capsicum annuum L.) inbred line genotypes by rootstock with vigorous root system. Gesunde Pflanz 73:375–389

    Google Scholar 

  • Alvino A, D’Andria R, Delfine S, Lavini A, Zanetti P (2000) Effect of water and salinity stress on radiation absorption and efficiency in sunflower. Italian J Agron 4:53–60

    Google Scholar 

  • Avestan S, Ghasemnezhad M, Esfahani M, Byrt CS (2019) Application of nano-silicon ioxide improves salt stress tolerance in strawberry plants. Agronomy 9(5):246. https://doi.org/10.3390/agronomy9050246

    Article  CAS  Google Scholar 

  • Avestan S, Naseri L, Barker AV (2017) Evaluation of nanosilicon dioxide and chitosan on tissue culture of apple under agar-induced osmotic stress. J of Plant Nutrition 40:2797–2807

    CAS  Google Scholar 

  • Aydınşakir K, Ulukapı K, Kurum R, Tetik N, Kulcan A (2015) The effects of different salt concentrations on growth and total chlorophyll content of some pumpkin rootstocks. J Derim 32(2):187–200 (in Turkish)

    Google Scholar 

  • Balkaya A, Kandemir D (2015) An overview of winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) growing in Turkey. Azarian J Agric 2(3):57–64

    Google Scholar 

  • Balkaya A, Kurtar ES, Yanmaz R, Ozbakir M (2011) The promising winter squash cultivars candidate developed by selection breeding from the Black Sea Region, Turkey. Turkey IV. Seed Congress. Proceedings Book‑1, pp 17–22 (in Turkish)

    Google Scholar 

  • Balkaya A, Yıldız S, Horuz A, Doğru Ş (2016) Effects of salt stress on vegetative growth parameters and Ion accumulations in cucurbit rootstock. Genotypes Ekin J Crop Breed Genet 2(2):11–24

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58. https://doi.org/10.1080/07352680590910410

    Article  CAS  Google Scholar 

  • Bates LS, Waldre NRP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Bayat R, Kuşvuran S, Ellialtıoğlu S, Üstün S (2014) Effects of proline application on antioxidative enzymes activities in the young pumpkin plants (Cucurbita pepo L. and C. moschata Poir.) under salt Stress. Turk J Agric Nat Sci 1(1):25–33 (in Turkish)

    Google Scholar 

  • Belkhodja R, Morales F, Abadia A, Gomez-Aparisi J, Abadia J (1994) Total chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol 104:667–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A (1985) Breeding crop varieties for stress environments. CRC Crit Rev Plant Sci 2(3):199–238

    Google Scholar 

  • Cha-Um S, Kirdmanee C (2009) Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak J Bot 41(1):87–98

    CAS  Google Scholar 

  • Dasgan HY, Balacheva E, Yetisir H, Yarsi G, Altuntas O, Akhoundnejad Y, Coban A (2015) The effectiveness grafting to improve salt tolerance of sensitive melon when the tolerant melon is use as rootstock. Procedia Environ Sci 29:268

    Google Scholar 

  • Dejampour J, Aliasgarzad N, Zeinalabedini M, Niya MR, Hervan EM (2012) Evaluation of salt tolerance in almond [Prunus dulcis (L.) Batsch] rootstocks. Afr J Biotechnol 11(56):11907–11912

    CAS  Google Scholar 

  • Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Funct Plant Biol 25:395–402

    CAS  Google Scholar 

  • Demir S (2009) Investigation on salt tolerance of the local melon populations grown in Salt Lake region. Master Thesis (Unpublished). Graduate School of Natural and Applied Sciences, Ankara University, Ankara, p 97 (in Turkish)

    Google Scholar 

  • Dölek MN (2009) Determination of salinity tolerance levels of various watermelon genotypes. Master Thesis. Institute of Natural and Applied Science, University of Çukurova, Adana (in Turkish)

    Google Scholar 

  • El Shraiy AM, Mostafa MA, Zaghlool SA, Shehata SAM (2011) Physiological aspect of NaCl-salt stress tolerant among Cucurbitaceous cultivars. Aust J Basic Appl Sci 5(11):62–71

    Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    CAS  Google Scholar 

  • Foyer C, Shıgeoka G (2011) Understanding oxidative stress and antioxidant aunctions to enhance photosynthesis. Plant Physiol 155:93–100

    CAS  PubMed  Google Scholar 

  • Franco JA, Esteban C, Rodriguez C (1993) Effect of salinity on various growth stages of muskmelon cv Revigal. J Hortic Sci 68:899–904

    CAS  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47(1):39–50

    CAS  Google Scholar 

  • Glenn EP, Brown JJ, Khan MJ (1997) Mechanisms of salt tolerance in higher plants. In: Basra AS, Basra RK (eds) Mechanisms of environmental stress resistance in plants. Harwood Academic Publishers, , pp 83–110

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhallophytes. Annu Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Gupta S, Schillaci M, Walker R, Smith PM, Watt M, Roessner U (2020) Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant Soil 461(1):1–26

    Google Scholar 

  • Hanson B, Grattan A, Fulton A (2006) Agricultural salinity and drainage; Davis, California irrigation program WMS. Water Management Series 3375. University of California, Oakland, pp 1–159

    Google Scholar 

  • Hasegawa PM, Bressan RA, Handa AK (1986) Cellular mechanisms of salinity tolerance. HortScience 21(6):1317–1324

    CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agricultural Experiment Station. Circular 347. 2nd edit, New York

  • Kahlaoui B, Hachicha M, Rejeb S, Rejeb MN, Hanchi B, Misle E (2011) Effects of saline water on tomato under subsurface drip irrigation: nutritional and foliar aspects. J Soil Sci Plant Nutr 11(69):86

    Google Scholar 

  • Kapur B (2010) Enhanced CO2 and global climate change effects on wheat yield in Çukurova region. PhD Thesis. Institute of Natural and Applied Science, University of Çukurova, Adana (in Turkish)

    Google Scholar 

  • Karaağaç O (2013) Determination of rootstock potential of winter squash (Cucurbita maxima Ducshesne) and pumpkin (C. moschata Ducshesne) genotypes selected from Black Sea Region for watermelon. Doctoral Thesis (Unpublished). Graduate School of Natural and Applied Sciences, Ondokuz Mayıs University, Samsun, p 240 (in Turkish)

  • Katerji N, Van Hoorn LW, Hamdy A, Mastrorilli M, Mou Karzel E (1997) Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agric Water Manag 34(1):57–69

    Google Scholar 

  • Kaya C, Higgs D, Ince F, Amador BM, Çakır A, Sakar E (2003) Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. J Plant Nutr Soil Sci 26:807–820

    CAS  Google Scholar 

  • Koca H, Bor M, Özdemir F, Türkan D (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    CAS  Google Scholar 

  • Korkmaz A, Dufault RJ (2001) Developmental consequences of cold temperature stress at transplanting on seedling and field growth and yield I. Watermelon. J Am Soc Hortic Sci 126(4):404–409

    Google Scholar 

  • Kotagiri D, Kolluru VC (2017) Effect of salinity stress on the morphology and physiology of five different Coleus species. Biomed Pharmacol J 10(4):1639–1649

    Google Scholar 

  • Kurtar ES, Balkaya A, Kandemir D (2016) Screening for salinity tolerance in developed winter squash (Cucurbita maxima) and pumpkin (Cucurbita moschata) lines. Yuzuncu Yil Univ J Agric Sci 26(2):183–195 (in Turkish)

    Google Scholar 

  • Kuşvuran S (2010) Relationships between physiological mechanisms of tolerances to drought and salinity in melons. Doctoral Thesis (Unpublished),. Graduate School of Natural and Applied Sciences, Çukurova University, Adana, p 356 (in Turkish)

    Google Scholar 

  • Lamm FR (2016) Cotton, tomato, corn and onion production with subsurface drip irrigation: A review. Trans ASABE 59(1):263–278

    Google Scholar 

  • Lauchli A, Epstein E (1990) Plant responses to saline and sodic conditions. In: Tanji KK (ed) Agricultural Salinity Assessment and Management. Manuals and Reports on Engineering Practice. American Social Civil Engineering, New York, pp 113–137

    Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA et al. (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, p 1–32

    Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) callus cultures. J Plant Physiol 149:186–195

    CAS  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2):30. https://doi.org/10.3390/horticulturae3020030

    Google Scholar 

  • Machado RMA, Bryla DR, Verissimo ML, Sena AM, Oliveira MRG (2008) Nitrogen requirements for growth and early fruit development of drip-irrigated processing tomato (Lycopersicon esculentum Mill.) in Portugal. J Food Agric Environ 6:215–218

    CAS  Google Scholar 

  • Malash NM, Flowers TJ, Ragab R (2008) Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrigation Sci 26:313–323

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of high plants. Academic Press, London

    Google Scholar 

  • Matysik J, Alia B, Bhalu, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environment 25:239–250

    CAS  Google Scholar 

  • Munns R, James RA (2003) Screening methods for salt tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    CAS  Google Scholar 

  • Munns R, Passioura J, Colmer TD, Byrt C (2019) Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol 225:1091–1096

    PubMed  Google Scholar 

  • Pardo JM (2010) Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol 21:85–96

    Google Scholar 

  • Petrusa LM, Winicov I (1997) Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem 35:303–310

    CAS  Google Scholar 

  • Rao B, Rao VS (1981) Effect of exogenous application of plant hormones on growth and yield of pigeon pea. Indian Agric 26:110–123

    Google Scholar 

  • Ruiz JM, Belakbir A, Lopez Cantarero I, Romero L (1997) Leaf macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Sci Hortic 71:227–234

    Google Scholar 

  • Seaby RM, Henderson PA (2007) Community analyses package (CAP 4.1.3). Pisces Conservation, Lymington

    Google Scholar 

  • Sevengor S, Yasar F, Kusvuran S, Ellialtioglu S (2011) The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. Afr J Agric Res 6(21):4920–4924

    Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

    CAS  PubMed  Google Scholar 

  • Sivritepe N (1995) Researches on salt resistance tests and some factors affecting salt resistance in gravepines. PhD Thesis. Institute of Natural and Applied Science, University of Uludağ, Bursa (in Turkish)

    Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuna AL, Yakıt S (2006) Effects of Ca, Mg and K on stress parameters in corn under salt stress. Akdeniz Univ J Agric Sci 19(1):59–67

    Google Scholar 

  • Turan MA, Elkarim AHA, Taban N, Taban S (2009) Effect of salt stress on growth, stomatal resistance, proline and total chlorophyll concentrations on maize plant. Afr J Agric Res 4(9):893–897

    Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Meth Enzymol 428:419–438

    CAS  Google Scholar 

  • Tıpırdamaz R, Ellialtıoğlu Ş (1997) Some physiological and biochemical changes in Solanum melongena L. genotypes grown under salt conditions. Progress in Botanical Research (First Balkan Botanical Congress, Thessaloniki), pp 377–380

    Google Scholar 

  • Vitart V, Baxter I, Doerner P, Harper JF (2004) Evidence for a role in growth and salt resistance of a plasma membrane H+AT Pase in the root endodermis. Plant J 27:191–201

    Google Scholar 

  • Wang SF, Hu YX, Sun HJ, Shi X, Pan HW, Chen YT (2014) Effects of saline stress on growthand root development of two oak seedlings. Acta Ecol Sin 34(4):1021–1029

    Google Scholar 

  • Willadino L, Camara TR, Ribeiro MB, Amaral DOJ, Suassuna F, Silva MVD (2017) Mechanisms of tolerance to salinity in banana: Physiological, biochemical, and molecular aspects. Rev Bras Frutic. https://doi.org/10.1590/0100-29452017723

    Article  Google Scholar 

  • Wu H (2018) Plant salt tolerance and Na+ sensing and transport. Crop J 8(6):215–225

    Google Scholar 

  • Yamaç M (2017) Rootstock Potential Of Some Selected Bottle Gourd (Lagenaria Sicerarıa) Genotypes From Turkish Germplsm For Watermelon Under Saline Conditions. Thesis. Gaziosmanpaşa University, Erciyes University, Graduate School of Natural and Applied Sciences M.Sc., Kayseri

    Google Scholar 

  • Yasar F (2003) Investigation of some antioxidant enzyme activities in eggplant genotypes grown under salt stress in vitro and in vivo (Doctoral dissertation). PhD Thesis. Institute of Natural and Applied Science, University of Yuzuncu Yıl), Van

    Google Scholar 

  • Yasar F, Ellialtioglu S, Yildiz K (2008) Effect of salt stress on antioxidant defence systems, lipid peroxidation, and total chlorophyll content in green bean. Russ J Plant Physiol 55(6):782–786

    CAS  Google Scholar 

  • Yetişir H, Uygur V (2009) Plant growth and mineral element content of different gourd species and watermelon under salinity stress. Turk J Agric For 33:65–77

    Google Scholar 

  • Yetişir H, Uygur V (2010) Responses of grafted watermelon onto different gourd species to salinity stress. J Plant Nutr 33:315–327

    Google Scholar 

  • Yıldız S (2014) Determination of salinity tolerance levels of some winter squash and pumpkin (Cucurbita spp.) genetic resources as rootstocks for grafted cucumber seedling production. Master thesis. Institute of Natural and Applied Science, University of Ondokuz Mayıs, Samsun

    Google Scholar 

  • Yıldız S, Balkaya A (2016) The hypocotyls traits of salt tolerant winter squash and pumpkin rootstocks and the determination of grafting compatibility with cucumber. Yuzuncu Yıl Univ J Agric Sci 26(4):538–546 (in Turkish)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Scientific and Technical Research Council of Turkey (TUBITAK Project No: TOVAG 112-O-480) and the Scientific Research Projects Unit of Ondokuz Mayıs University of Turkey (PYO.ZRT.1901.12.011). The authors also thank Gregory T. Sullivan PhD for proofreading several earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Horuz.

Ethics declarations

Conflict of interest

A. Horuz, A. Balkaya, S. Yıldız, Ş. Sarıbaş and V. Uygur declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horuz, A., Balkaya, A., Yıldız, S. et al. Comparison of the Salt Stress Tolerance of Promising Turkish Winter Squash (Cucurbita maxima Duch.) and Pumpkin (Cucurbita moschata Duch.) Lines and Interspecific Hybrids. Gesunde Pflanzen 74, 69–86 (2022). https://doi.org/10.1007/s10343-021-00589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00589-9

Keywords

Schlüsselwörter

Navigation