Skip to main content
Log in

The Efficacy of Grafting on Alkali Stressed Watermelon Cultivars Under Hydroponic Conditions

Die Wirksamkeit der Pfropfung auf Wassermelonensorten unter Alkalistress und hydroponischen Bedingungen

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The goal of the present study was to determine whether grafting of watermelon on gourd rootstocks could improve alkalinity tolerance and to investigate the physiological and morphological response mechanisms of the grafted plants under different pH levels. The experiment was carried out in a climate chamber to investigate growth, leaf chlorophyll content (SPAD), leaf area, stem length, shoot and root dry weight, root length, electrolyte leakage, leaf mineral composition, total chlorophyll and carotenoid contents. Two watermelon cultivars (Crimson tide, CT, and Crisby) were grafted onto three commercial Cucurbita maxima × C. moschata hybrid rootstocks under climate-chamber conditions (Strong tosa, ST, Ercole and Nun 9075). The grafted seedlings were transplanted onto 8 L continuously aerated pots containing nutrient solution with two different pH levels (8.5 and 6.5) and replicated three times. The results showed that in both grafted and non-grafted plants, there was a substantial reduction in shoot and root biomass production at high pH levels. At high pH level, the significantly highest leaf area, stem length, SPAD, concentration of P, Ca, S and Mn in leaf tissues were recorded in graft combination ‘Crisby/Ercole’, whereas the significantly highest concentration of Fe in leaf tissues, shoot dry weight were recorded in graft combination ‘Crisby/Nun 9075’. Moreover, at high pH, the significantly highest concentration of Mg and Cu in shoot under high pH levels was significantly found in graft combination of ‘CT/ST’. These results suggest that the use of interspecific Cucurbita maxima × C. moschata hybrid rootstocks can improve crop performance in watermelon plants under alkaline conditions.

Zusammenfassung

Das Ziel der vorliegenden Studie war es zu bestimmen, ob das Pfropfen von Wassermelonen auf Kürbiswurzelstöcke die Alkalitoleranz verbessern kann und die physiologischen und morphologischen Reaktionsmechanismen der gepfropften Pflanzen bei verschiedenen pH-Werten zu untersuchen. Das Experiment wurde in einer Klimakammer durchgeführt, um Wachstum, Blattchlorophyllgehalt (SPAD), Blattfläche, Stammlänge, Spross- und Wurzeltrockengewicht, Wurzellänge, Elektrolytverlust, Blattmineralzusammensetzung, Gesamtchlorophyll- und -carotinoidgehalt zu untersuchen. Zwei Wassermelonensorten (Crimson tide, CT, und Crisby) wurden unter Klimakammerbedingungen (Strong tosa, ST, Ercole und Nun 9075) auf drei kommerzielle Cucurbita maxima × C. moschata-Hybridwurzelstöcke gepfropft. Die gepfropften Sämlinge wurden in kontinuierlich belüftete 8‑Liter-Töpfe gepflanzt, die Nährlösung mit zwei verschiedenen pH-Werten (8,5 und 6,5) enthielten; der Versuch wurde dreimal repliziert. Die Ergebnisse zeigten, dass sowohl bei den gepfropften als auch bei den nicht gepfropften Pflanzen eine erhebliche Verringerung der Spross- und Wurzelbiomasseproduktion bei hohen pH-Werten auftrat. Bei hohem pH-Wert wurden die signifikant höchsten Werte bzgl. Blattfläche, Stammlänge, SPAD, Konzentration von P, Ca, S und Mn im Blattgewebe bei der Pfropfkombination ‚Crisby/Ercole‘ aufgezeichnet, während die signifikant höchste Fe-Konzentration im Blattgewebe und das höchste Sprosstrockengewicht bei der Kombination ‚Crisby/Nun 9075‘ registriert wurden. Außerdem wurde bei hohem pH-Wert die signifikant höchste Konzentration von Mg und Cu im Spross bei der Pfropfkombination ‚CT/ST‘ gefunden. Diese Ergebnisse legen nahe, dass die Verwendung von interspezifischen Cucurbita maxima × C. moschata-Hybridwurzelstöcken die Ertragsfähigkeit von Wassermelonenpflanzen unter alkalischen Bedingungen verbessern kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11:2694–2703

    CAS  Google Scholar 

  • Ahmad P, Ozturk M, Sharma S, Gucel S (2014) Effect of sodium carbonate-induced salinity-alkalinity on some key osmoprotectants, protein profile, antioxidant enzymes, and lipid peroxidation in two mulberry (Morus Alba L.) cultivars. J Plant Interactions 9(1):460–467

    Article  CAS  Google Scholar 

  • Alan O, Ozdemir N, Gunen Y (2007) Effect of grafting on watermelon plant growth, yield and quality. J Agron 6:362–365

    Article  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The role of plant hormones in salinity tolerance of plants: brassinosteroids and salicylic acid. Crit Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Aydın A (2018) Determination of high pH tolerance and rootstock potential of different gourd genotypes (Cucurbita maxima X C. moshata and Lagenaria Siceraria) for melon. Master Thesis. Erciyes University, Graduate School of Natural and Applied Sciences, Kayseri

    Google Scholar 

  • Bano S, Ashraf M, Akram NA (2013) Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot (Daucus carota L.). J Plant Interact. https://doi.org/10.1080/17429145.2013.832426

    Article  Google Scholar 

  • Bertoni GM, Pissaloux A, Morad P, Sayag DR (1992) Bicarbonate-pH relationship with iron chlorosis in white lupine. J Plant Nutr 15:1509–1518

    Article  CAS  Google Scholar 

  • Bialczyk J, Lechowski Z, Libik A (1994) Growth of tomato seedlings under different HCO3− concentration in the medium. J Plant Nutr 17:801–816

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2000) Elements of the nature and properties of soils, 12th edn. Prentice Hall, Upper Saddle River, pp 254–266

    Google Scholar 

  • Ceylan S, Alan O, Elmacı OL (2018) Effects of grafting on nutrient element content and yield in watermelon. Ege Üniv Ziraat Fak Derg 55(1):67–74

    CAS  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Salerno A, Rea E (2010) The effectiveness of grafting to improve alkalinity tolerance in watermelon. Envir Exp Bot 68:283–291

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y, Mirabelli C, Cardarelli M (2011) Nitrogen-use efficiency traits of mini-watermelon in response to grafting and nitrogen-fertilization doses. J Plant Nutr Soil Sci 174:933–941

    Article  CAS  Google Scholar 

  • De la Guardia MD, Alcántara E (2002) Bicarbonate and low iron level increase root to total plant weight ratio in olive and peach rootstock. J Plant Nutr 25:1021–1032

    Article  Google Scholar 

  • FAO (2017) Food and Agriculture Organization of the United Nations. http://fenix.fao.org/faostat/beta/en/#data/QC. Accessed 4 Mar 2019

  • Hasegawa PM, Ray BA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Jabnoun-Khiareddine H, Abdallah RAB, Daami-Remadi M, Nefzi A, Ayed F (2019) Grafting tomato cultivars for soil borne disease suppression and plant growth and yield improvement. J Plant Pathol Microbiol 10:1

    Google Scholar 

  • Johnson CM, Ulrich A (1959) Analytical methods for use in plant analysis, 1st edn. California Agricultural Experiment Station, California

    Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Kang YI, Park JM, Kim SH, Kang NJ, Park KS, Lee SY, Jeong BR (2011) Effects of root zone pH and nutrient concentration on the growth and nutrient uptake of tomato seedlings. J Plant Nutr 34:640–652

    Article  CAS  Google Scholar 

  • Katare DP, Nab G, Azooz MM, Aeri V, Ahmad P (2012) Biochemical modifications and enhancement of psoralen content in salt-stressed seedlings of Psoralea corylifolia Linn. J Funct Environ Bot 2:65–74

    Article  Google Scholar 

  • Kaya C, Higgs D, Kırnak H, Taş I (2003) Ameliorative effect of calcium nitrate on cucumber and melon plants drip irrigated with saline water. J Plant Nutr 26(8):1665–1681

    Article  CAS  Google Scholar 

  • Kaya C, Sonmez O, Aydemir S, Ashraf M, Dikilitas M (2013) Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.). J Plant Interact 8:234–241

    Article  CAS  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28

    Google Scholar 

  • Kulak S (2015) Effects of lime application on growth and nutrient content of grafted and nongrafted tomato plants in acid soil. Master Thesis. Ordu University, Graduate School of Natural and Applied Sciences, Ordu

    Google Scholar 

  • Lee JM (1994) Cultivation of grafted vegetables I: current status, grafting methods and benefits. HortScience 29:235–239

    Article  Google Scholar 

  • Lee JM, Kubota C, Tsao SJ, Bie Z, Hoyos Echevarria P, Morra L, Oda M (2010) Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127(2):93–105

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lin J, Li X, Zhang Z, Yu X, Gao Z, Wang Y, Wang J, Li Z, Mu C (2012) Salinity-alkalinity tolerance in wheat: seed germination, early seedling growth, ion relations and solute accumulation. Afr J Agric Res 7:467–474

    Google Scholar 

  • Liu J, Guo WQ, Shi DJ (2010) Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions. Photosynt 48(2):278–286

    Article  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice varieties differing in salinity resistance. J Exp Bot 46:1843–1852

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Miguel A, Maroto JV, San Bautista A, Baixauli C, Cebolla V, Pascual B et al (2004) The grafting of triploid watermelon is an advantageous alternative to oil fumigation. Sci Hortic 103:9–17

    Article  CAS  Google Scholar 

  • Passam HC (2003) Use of grafting makes a comeback. Fruit Veg Tech 3:7–9

    Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P (2011) Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense. J Plant Interact 6:275–282

    Article  CAS  Google Scholar 

  • Pearce RC, Li Y, Bush LP (1999) Ca and bicarbonate effects on the growth and nutrient uptake of burley tobacco seedlings: float system. J Plant Nutr 22(7):1999

    Google Scholar 

  • Pissaloux A, Morarad P, Bertoni G (1995) Alkalinity-bicarbonate calcium effects on iron chlorosis in white lupine in soilless culture. In: Abadia J (ed) Development in plant and soil science. Iron nutrition in soils and plants Seventh International Symposium on Iron Nutrition and Interactions in Plants, Zaragoza, June 27–July 2, 1993. vol 59. Kluwer Academic Publishers, Dordrecht, pp 127–133

    Chapter  Google Scholar 

  • Pulgar G, Villora G, Moreno DA, Romero L (2000) Improving the mineral nutrition in grafted watermelon plants: nitrogen metabolism. Biol plant 43:607–609

    Article  CAS  Google Scholar 

  • Rasool S, Hameed A, Azooz MM, Rehman M, Siddiqi TO, Ahmad P (2012) Salt stress: causes, types and responses of plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, Heidelberg, Dordrecht, London, pp 1–24

    Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35:1039–1050

    Article  CAS  Google Scholar 

  • Roosta HR (2011) Interaction between water alkalinity and nutrient solution pH on the vegetative growth, chlorophyll fluorescence and leaf Mg, Fe, Mn and Zn concentrations in lettuce. J Plant Nutr 34:717–731

    Article  CAS  Google Scholar 

  • Roosta HR, Karimi HR (2012) Effects of alkali-stress on ungrafted and grafted cucumber plants: Using two types of local squash as rootstock. J Plant Nutr 35:1843–1852

    Article  CAS  Google Scholar 

  • Savvas D, Colla G, Rouphael Y, Schwarz D (2010) Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Sci Hortic 127:156–161

    Article  CAS  Google Scholar 

  • Schwarz D, Rouphael Y, Colla G, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hortic 127:162–171

    Article  CAS  Google Scholar 

  • Tachibana S (1982) Comparison of effects of root temperature on growth and mineral nutrition of cucumber cultivars and fig-leaf gourd. J Jpn Sochort Sci 51:299–308

    Google Scholar 

  • Tremblay N, Masson J, Gosselin A (1989) Influence of pH and bicarbonate content of nutrient solutions on characteristics of saturated medium extract and mineral composition of celery seedlings. Acta Hortic 2238:119–125

    Article  Google Scholar 

  • Valdez-Aguilar LA (2004) Effect of alkalinity in irrigation water on selected greenhouse crops. Doctoral dissertation. A&M Univ, College Station

    Google Scholar 

  • Walter A, Silk WK, Schurr U (2000) Effect of soil pH on growth and cation deposition in the root tip of Zea mays L. J Plant Growth Regul 19:65–76

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wu Z, Chen Y, Yang C, Shi D (2011) Effects of salt and alkali stresses on growth and ion balance in rice (Oryza sativa L.). Plant Soil Environ 57:286–294

    Article  Google Scholar 

  • Wang H, Wu Z, Han J, Zheng W, Yang C (2012) Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants. PLoS ONE 7(5):e37817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yetisir H, Sari N (2003) Effect of rootstock on plant growth, yield and quality of watermelon. Aust J Exp Agri 43:1269–1274

    Article  Google Scholar 

  • Zhang P, Fu J, Hu L (2012) Effects of alkali stress on growth, free amino acids and carbohydrates metabolism in Kentucky bluegrass (Poa pratensis). Ecotoxicology 21:1911–1918

    Article  CAS  PubMed  Google Scholar 

  • Zribi K, Gharsalli M (2002) Effect of bicarbonate on growth and iron nutrition of pea. J Plant Nutr 25:2143–2149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdes Ulas.

Ethics declarations

Conflict of interest

F. Ulas, A. Aydın, A. Ulas and H. Yetisir declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulas, F., Aydın, A., Ulas, A. et al. The Efficacy of Grafting on Alkali Stressed Watermelon Cultivars Under Hydroponic Conditions. Gesunde Pflanzen 73, 345–357 (2021). https://doi.org/10.1007/s10343-021-00559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00559-1

Keywords

Schlüsselwörter

Navigation