Skip to main content

Advertisement

Log in

Physio-biochemical and Agronomic Response of Ascorbic Acid Treated Sunflower (Helianthus Annuus) Grown at Different Sowing Dates and Under Various Irrigation Regimes

Physiologische Reaktion von mit Ascorbinsäure behandelten Sonnenblumen (Helianthus annuus), die zu unterschiedlichen Aussaatterminen und unter bestimmten Bewässerungsbedingungen gezüchtet wurde

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Maximizing the utilization of water unit is of paramount importance in arid zones and worldwide. This is even more significant when plants are subjected to both thermal and water stress. Hence, a two-year (2014 and 2015 seasons) field trial was carried out to study the effect of three sowing dates (April 21, May 21, and June 21); two irrigation levels (I100 and I85) and two ascorbic acid rates, ASA (0 and 450 mg L−1), on physiological and biochemical traits, productivity and water use efficiency (WUE) of sunflower. Results showed that subjecting sunflower plants to water deficit under any sowing date caused decreases in chlorophyll, carotenoids, oil% and seed yield and an increase in proline content. As averages of the two seasons, ASA treated plants caused increases in seed yield amounted to 11.7%, 10.6% and 8.4% with I100 and 5.1%, 14.4% and 7.7% with I85 compared to non-treated plants sown in April, May and June, respectively. In ASA treated plots, WUE values of sowing in April x I100 or sowing in June x I85 in 2014 and sowing in May x I85 in 2015 were as similar as that of conventional practice (sowing in May x I100 × 0 mg L−1 ASA). Accordingly, results clarify that ASA can be used successfully in sunflower management programs, particularly under abiotic stresses e.g. unfavorable heat and drought.

Zusammenfassung

Die Maximierung der Nutzung von Wassereinheiten ist in ariden Gebieten und weltweit von größter Bedeutung. Dies ist umso wichtiger, wenn Pflanzen sowohl thermischem als auch Wasserstress ausgesetzt sind. Daher wurde ein zweijähriger Feldversuch (Saison 2014 und 2015) durchgeführt, um die Auswirkungen von drei Aussaatterminen (21. April, 21. Mai und 21. Juni), zwei Bewässerungsstufen (I100 und I85) und zwei Ascorbinsäureraten, ASS (0 und 450 mg L−1), auf physiologische und biochemische Eigenschaften, Produktivität und Wassernutzungseffizienz (WUE) von Sonnenblumen zu untersuchen. Die Ergebnisse zeigten, dass Sonnenblumenpflanzen, die zu irgendeinem Zeitpunkt der Aussaat einem Wassermangel ausgesetzt waren, eine Abnahme des Chlorophylls, der Carotinoide, des Ölanteils und des Samenertrags sowie eine Zunahme des Prolingehalts aufwiesen. Im Durchschnitt der beiden Saisons zeigten mit ASA behandelte Pflanzen Ertragssteigerungen von 11,7 %, 10,6 % und 8,4 % mit I100 und 5,1 %, 14,4 % und 7,7 % mit I85 im Vergleich zu nicht behandelten Pflanzen, die jeweils im April, Mai bzw. Juni ausgesät wurden. In mit ASA behandelten Parzellen waren die WUE-Werte für die Aussaat im April x I100 oder die Aussaat im Juni x I85 im Jahr 2014 und die Aussaat im Mai x I85 im Jahr 2015 so ähnlich wie in der konventionellen Praxis (Aussaat im Mai x I100 × 0 mg L−1). Dementsprechend verdeutlichen die Ergebnisse, dass ASA erfolgreich in Sonnenblumenmanagementprogrammen eingesetzt werden kann, insbesondere unter abiotischen Belastungen, z. B. Hitze und Trockenheit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Azem HS, Shehata SM, El-Gizawy AM, El-Yazied AA, Adam SM (2016) Proline, antioxidant enzymes activity and productivity of snap bean as affected by bio-regulators application under two sowing dates. Int J Pharmtech Res 9(10):163–172

    CAS  Google Scholar 

  • Ahmadi M, Souri MK (2018) Growth and mineral elements of coriander (Corianderum sativum L.) plants under mild salinity with different salts. Acta Physiol Plant 40:94–99

    Google Scholar 

  • Ahmadi M, Souri MK (2019) Nutrient uptake, proline content and antioxidant enzymes activity of pepper (Capsicum annuum L.) under higher electrical conductivity of nutrient solution created by nitrate or chloride salts of potassium and calcium. Act Sci Polon Hortic Cult 18(5):113–122

    Google Scholar 

  • Ahmed M, Hassan F (2015) Response of spring wheat (Triticum aestivum L.) quality traits and yield to sowing date. PLoS ONE 10(4):1–16

    Google Scholar 

  • Allen RG, Pereir LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. FAO, Food & Agriculture Organization, Rome

    Google Scholar 

  • Amin MA, Ismail MA (2015) Effect of Indole butyric, arginine, cyanocobalamine (B12), ascorbic acid and their interactions on growth, yield and some metabolic constituents of sunflower plants. Int J Adv Res Biol Sci 2:154–162

    CAS  Google Scholar 

  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • AOAC (2012) Association of official agriculture chemists. Official methods of analysis, 19th edn. AOAC, Washington, DC

    Google Scholar 

  • Arnon DI (1949) Copper enzyme polyphenoloxides in isolated chloroplast in Beta vulgaris. Plant Physiol 24:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz A, Akram NA, Ashraf M (2018) Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiol Biochem 123:192–203

    CAS  PubMed  Google Scholar 

  • Bates LS, Walden RP, Teare ID (1973) Rapid determination of proline for water stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Casella G (2008) Statistical design, 1st edn. Springer, Gainesville, pp 32611–38545

    Google Scholar 

  • Caviglia OP, Sadras VO (2001) Effect of nitrogen supply on crop conductance, water- and radiation-use efficiency of wheat. Field Crop Res 69:259–266

    Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    CAS  PubMed  Google Scholar 

  • Dolatabadian A, Jouneghani RS (2009) Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Notu Bot Hortic Agrobot Cluj Napoca 37:165–172

    CAS  Google Scholar 

  • Doorenbos J, Pruitt WO, Aboukhaled A, Damagnez J, Dastane NG, Van Den Berg C, Rijtema PE, Ashfor OM, Frere M (1977) Guidelines for predicting crop water requirements—FAO irrigation and drainage vol 24. FAO, Food & Agriculture Organization, Rome, pp 35–95

    Google Scholar 

  • El-Bially MA, Saudy HS, El-Metwally IM, Shahin MG (2018) Efficacy of ascorbic acid as a cofactor for alleviating water deficit impacts and enhancing sunflower yield and irrigation water-use efficiency. Agric Water Manag 208:132–139

    Google Scholar 

  • El-Mantawy RF (2017) Physiological role of antioxidants in improving growth and productivity of sunflower under different sources of nitrogen fertilizers. Egypt J Agron 39:167–177

    Google Scholar 

  • Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin Heidelberg, pp 1–33

    Google Scholar 

  • Foyer NGCH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Biol 49:249–279

    Google Scholar 

  • Gay C, Corbineau F, Côme D (1991) Effects of temperature and oxygen on seed germination and seedling growth in sunflower (Helianthus annuus L.). Environ Expert Bot 31(2):193–200

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    PubMed  PubMed Central  Google Scholar 

  • Hatamian M, Nejad RA, Kafi M, Souri MK, Shahbazi K (2020) Nitrate improves hackberry seedling growth under cadmium application. Heliyon 6(1):e3247

    PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Hoque MA, Burritt DJ, Fujita M (2014) Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. In: Ahmad P (ed) Oxidative damage to plants: antioxidant networks and signaling. Academic Press, Elsevier, pp 477–522

    Google Scholar 

  • Hsu SY, Hsu YT, Kao CH (2003) The effect of polyethylene glycol on proline accumulation in rice leaves. Biol Plantarum 46:73–78

    CAS  Google Scholar 

  • Kaleem S, Hassan FU, Saleem A (2009) Influence of environmental variations on physiological attributes of sunflower. Afr J Biotech 8:3531–3539

    Google Scholar 

  • Keller J, Bliesner RD (1990) Sprinkle and Trickle Irrigation. AVI Book. Van Nostrand Reinhold, New York

    Google Scholar 

  • Khan A, Lang I, Amjid M, Shah A, Ahmad I, Nawaz H (2014) Inducing salt tolerance on growth and yield of sunflower by applying different levels of ascorbic acid. J Plant Nutr 36:1180–1190

    Google Scholar 

  • Kumar S, Sairam RK, Prabhu KV (2013) Physiological traits for high temperature stress tolerance in Brassica juncea. Ind J Plant Physiol 18:89–93

    Google Scholar 

  • Levene H (1960) Robust tests of equality of variances. In: Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB (eds) Contributions to probability and statistics, essays in honor of harold hotelling. Stanford University Press, Stanford, pp 278–292

    Google Scholar 

  • Mohammadipour N, Souri MK (2019) Beneficial effects of glycine on growth and leaf nutrient concentrations of coriander (Coriandrum sativum) plants. J Plant Nutr 42(14):1637–1644

    CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Ann Rev Plant Physiol Plant Mol Biol 52:561–591

    CAS  Google Scholar 

  • Munné-Bosch S, Peñuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    PubMed  Google Scholar 

  • Osman EA, El-Galad MA, Khatab KA, El-Sherif MA (2014) Effect of compost rates and foliar application of ascorbic acid on yield and nutritional status of sunflower plants irrigated with saline water. Glob J Sci Res 2:193–200

    Google Scholar 

  • Prabha C, Bharti S (1980) Effect of ascorbic acid on proline accumulation in cowpea leaves under water stress conditions. Ind J Plant Physiol 23:317–318

    CAS  Google Scholar 

  • Prasad V, Upadhyay RS (2011) Ascorbate and glutathione: saviours against oxidative stress. In: Anjum NA, Umar S, Ahmad A (eds) Oxidative stress in plants: causes, consequences and tolerance. I.K. International Publishing House, New Delhi, pp 149–176

    Google Scholar 

  • Qadir G, Hassan F, Malik MA (2007) Growing degree days and yield relationship in sunflower (Helianthus annuus L.). Int J Agric Biol 9:564–568

    Google Scholar 

  • Saghaiesh SP, Souri MK, Moghaddam M (2019) Characterization of nutrients uptake and enzymes activity in Khatouni melon (Cucumis melo var. inodorus) seedlings under different concentrations of nitrogen, potassium and phosphorus of nutrient solution. J Plant Nutr 42(2):178–185

    Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2007) Drought-induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench. Acta Bot Croat 66:43–56

    CAS  Google Scholar 

  • Saudy HS, El-Metwally IM, Abd El-Samad GA (2020) Physio-biochemical and nutrient constituents of peanut plants under bentazone herbicide for broad-leaved weed control and water regimes in dry land areas. J Arid Land. https://doi.org/10.1007/s40333-020-0020-y

    Article  Google Scholar 

  • Scholz FW, Stephens MA (1987) K‑sample Anderson-darling tests. J Am Stat Ass 82:918–924

    Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants. Biosynthesis and Function. Crit Rev Biochem Mol Biol 35:291–314

    CAS  PubMed  Google Scholar 

  • Souri MK, Bakhtiarizade M (2019) Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Sci Hortic 243:472–476

    CAS  Google Scholar 

  • Souri MK, Hatamian M (2019) Aminochelates in plant nutrition; a review. J Plant Nutr 42(1):67–78

    CAS  Google Scholar 

  • Souri MK, Tohidloo G (2019) Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chem Biol Tech Agric. https://doi.org/10.1186/s40538-019-0169-9

    Article  Google Scholar 

  • Souri MK, Hatamian M, Tesfamariam T (2019) Plant growth stage influences heavy metal accumulation in leafy vegetables of garden cress and sweet basil. Chem Biol Tech Agric. https://doi.org/10.1186/s40538-019-0170-3

    Article  Google Scholar 

  • Souri MK, Rashidi M, Kianmehr MH (2018) Effects of manure-based urea pellets on growth, yield, and nitrate content in coriander, garden cress, and parsley plants. J Plant Nutr 41(11):1405–1413

    CAS  Google Scholar 

  • Tóth SZ, Nagy V, Puthur JT, Kovács L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photo inactivation in heat-stressed leaves. Plant Physiol 156:382–392

    PubMed  PubMed Central  Google Scholar 

  • Venkatesh J, Park SW (2014) Role of L‑ascorbate in alleviating abiotic stresses in crop plants. Bot Stud 55:1–19

    CAS  Google Scholar 

  • Yawson DO, Bonsu M, Armah FA, Afrifa EKA (2011) Water requirement of sunflower (Helianthus annuus L.) in a tropical humid-coastal savanna zone. ARPN. J Agric Biol Sci 6:1–8

    Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the technical support providing from the Faculty of Agriculture, Ain Shams University and National Research Centre, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Saudy.

Ethics declarations

Conflict of interest

H. Saudy, M. El-Bially, I. El-Metwally and M. Shahin declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saudy, H., El-Bially, M., El-Metwally, I. et al. Physio-biochemical and Agronomic Response of Ascorbic Acid Treated Sunflower (Helianthus Annuus) Grown at Different Sowing Dates and Under Various Irrigation Regimes. Gesunde Pflanzen 73, 169–179 (2021). https://doi.org/10.1007/s10343-020-00535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-020-00535-1

Keywords

Schlüsselwörter

Navigation