Skip to main content

Advertisement

Log in

Effect of Salicylic Acid and Salinity Stress on the Performance of Tomato Plants

Einfluss von Salicylsäure und Salzstress auf die Eigenschaften von Tomatenpflanzen

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

A pot experiment was conducted to observe the effect of salicylic acid on qualitative and quantitative attributes of tomato plants under salinity stress at Agriculture Research Institute Tarnab, Peshawar during the summer season 2016. The experiment was conducted in a shade house and laid out in a completely randomized design (CRD) having 12 treatments and replicated thrice. After 15 days of transplantation tomato plants (cv. Rio Grande) were subjected to various levels of salinity (0, 30, 60 and 90 mM) and to foliar application of salicylic acid (0, 0.5 and 1 mM) at 6 days after salinity stress. Results revealed that salinity stress (90 mM NaCl) significantly reduced the fruit length (4.71 cm), fruit diameter (3.95 cm), number of fruits plant−1 (13), yield pot−1 (0.51 kg), fruit dry matter (6.89 g), and pH (4.14) with increase in fruit firmness (2.72 kg · cm2), total soluble solids (TSS, 8.87 0Brix) and vitamin C (18.07 mg · 100 ml). The foliar application of salicylic acid at 0.5 mM significantly reduced the harmful effect of salt stress and improved the fruit length (5.02 cm), fruit diameter (4.17 cm), number of fruits plant−1 (18.67), yield pot−1 (0.86 kg), fruit dry matter (9.04 g), fruit firmness (2.68 kg · cm2), TSS (9.05 0Brix), pH (4.33) and vitamin C (17.28 mg · 100 ml). Regarding in interaction both salinity and salicylic acid significantly affected all the variables except fruit firmness, total soluble solids, pH and vitamin C. From the present study it can be concluded that salinity reduced the quantitative attributes while it increased the qualitative attributes except pH. Therefore, salicylic acid at 0.5 mM might be applied to the tomato plant under saline condition up to 90 mM which could effectively alleviates the deleterious effect of salt stress.

Zusammenfassung

Während der Sommersaison 2016 wurde am Agriculture Research Institute Tarnab, Peshawar, ein Topfversuch durchgeführt, um die Wirkung von Salicylsäure auf qualitative und quantitative Eigenschaften von Tomatenpflanzen unter Salzstress zu beobachten. Das Experiment wurde in einem Gewächshaus mit Beschattung durchgeführt und in einem vollständig randomisierten Design (CRD) mit 12 Behandlungen und dreimaliger Wiederholung angelegt. 15 Tage nach der Anpflanzung wurden die Tomatenpflanzen (vgl. Rio Grande) verschiedenen Salzgehaltsstufen (0, 30, 60 und 90 mM) ausgesetzt und 6 Tage nach diesem Salzstress wurden die Blätter mit Salicylsäure (0, 0,5 und 1 mM) behandelt. Die Ergebnisse zeigten, dass Salzstress (90 mM NaCl) die Fruchtlänge (4,71 cm), den Fruchtdurchmesser (3,95 cm), die Anzahl der Früchte pro Pflanze (13), den Ertrag pro Topf (0,51 kg), die Fruchttrockenmasse (6,89 g) und den pH-Wert (4,14) signifikant reduzierte, bei gleichzeitiger Zunahme der Fruchtfestigkeit (2,72 kg · cm2), der gesamten löslichen Trockenmasse (TSS, 8,87 0Brix) und des Vitamin-C-Gehalts (18,07 mg · 100 ml). Die Behandlung der Blätter mit 0,5 mM Salicylsäure reduzierte die schädliche Wirkung des Salzstresses signifikant und verbesserte die Fruchtlänge (5,02 cm), den Fruchtdurchmesser (4,17 cm), die Anzahl der Früchte pro Pflanze (18,67), den Ertrag pro Topf (0,86 kg), die Fruchttrockenmasse (9,04 g), die Fruchtfestigkeit (2,68 kg · cm2), die TSS (9,05 0Brix), den pH-Wert (4,33) und den Vitamin-C-Gehalt (17,28 mg · 100 ml). Hinsichtlich der Auswirkungen beeinflussten sowohl der Salzgehalt als auch die Salicylsäure signifikant alle Variablen, mit Ausnahme der Fruchtfestigkeit, der gesamten löslichen Trockenmasse, des pH-Werts und des Vitamin-C-Gehalts. Aus der vorliegenden Studie kann geschlossen werden, dass der Salzgehalt die quantitativen Merkmale reduzierte, während er die qualitativen Parameter mit Ausnahme des pH-Werts erhöhte. Daher könnte Salicylsäure in einer Konzentration von 0,5 mM in einer salzhaltigen Umgebung (bis zu 90 mM) auf die Tomatenpflanze aufgetragen werden, was die schädliche Wirkung von Salzstress wirksam mildern könnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agamy RA, Hafez EE, Taha TH (2013) Acquired resistant motivated by salicylic acid applications on salt stressed tomato (Lycopersicum esculentum Mill.). Am Eur J Agric Environ Sci 13(1):50–57

    CAS  Google Scholar 

  • Akladious SA, Mohamed HI (2018) Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci Hortic 236:244–250

    CAS  Google Scholar 

  • Alaey M, Babalar M, Naderi R, Kafi M (2011) Effect of pre- and postharvest salicylic acid treatment on physio chemical attributes in relation to vase-life of Rose cut flowers. Postharvest Biol Technol 61:91–94

    CAS  Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI, Abd-Elsalam KA (2012a) Examination of correlations between several biochemical components and powdery mildew resistance of flax cultivars. Plant Pathol J 28(2):149–155

    CAS  Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI, Abd-Elsalam KA (2012b) Ascorbic acid of seeds and proteins of leaves as biochemical markers for resistance of flax to powdery mildew disease. Romanian Agric Res 29:63–69

    Google Scholar 

  • Aly AA, Heba IM, Mahmoud TMM, Moawad RO (2013) Suppression of Powdery Mildew on Flax by Foliar Application of Essential Oils. J Phytopathol 161(6):376–381

    Google Scholar 

  • Anon (1999) Bio herbicide snuffs out competition. Sci News 139(11):175

    Google Scholar 

  • AOAC (1990) Official methods of analysis of the association of official Agricultural Chemist vol 1. AOAC, Washington DC

    Google Scholar 

  • Babalar M, Asghari M, Talaei A, Khosroshahi A (2007) Effect of pre- and postharvest salicylic acid treatment on ethylene production, fungal decay andoverall quality of Selva strawberry fruit. Food Chem 105:449–453

    CAS  Google Scholar 

  • Baloch A (1994) Vegetable crops. Horticulture National Book Foundation, Islamabad, pp 489–509

    Google Scholar 

  • Basit A, Shah K, Rahman MU, Xing L, Zuo X, Han M, Alam N, Khan F, Ahmed I, Khalid MA (2018) Salicylic acid an emerging growth and flower inducing hormone in marigold (Tagetes sp. L.). Pure Appl Biol 7(4):1301–1308

    CAS  Google Scholar 

  • Belda R, Ho LC (1993) Salinity effects on the network of vascular bundles during tomato fruit development. J Hortic Sci 68:557–564

    Google Scholar 

  • Britannica (1990) The new encyclopedia britannica, 15th edn. vol 11. Encyclopedia Inc, Chicago, pp 135–137

    Google Scholar 

  • Champa WAH, Gill MIS, Mahajan BVC, Arora NK (2015) Preharvest salicylic acid treatments to improve quality and postharvest life of table grapes (Vitis vinifera L.) cv. Flame Seedless. J Food Sci Technol 52:3607–3616

    CAS  Google Scholar 

  • Davarynejad G, Zarei M, Ardakani E, Nasrabadi ME (2013) Influence of putrescence application on storability, postharvest quality and antioxidant activity of two Iranian apricot (Prunus armeniaca L.) Cultivars. Notulae Sci Bio 5(2):212–219. https://doi.org/10.15835/nsb529041

    Article  CAS  Google Scholar 

  • Dorais M, Ehret DL, Papadopoulos AP (2008) Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev 7:231–250

    CAS  Google Scholar 

  • Ehret DL, Ho LC (1986) The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J Hortic Sci 61:361–367

    Google Scholar 

  • El-Beltagi HS, Mohamed HI, Mohammed AHMA, Zaki LM, Mogazy AM (2013) Physiological and biochemical effects of γ‑irradiation on cowpea plants (Vigna sinensis) under salt stress. Not Bot Hortic Agrobo 41(1):104–114

    CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Sofy MR (2020) Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules 25:1702

    CAS  Google Scholar 

  • El-Mashad AAA, Mohamed HI (2012) Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249:625–635

    CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in (Brassica juncea). Photosynt 41:281–284

    CAS  Google Scholar 

  • Farooq M, Ullah H, Nawab NN, Qureshi KM (2013) Evaluation of indigenous tomato hybrids under plastic tunnel. Pak J Agric Res 26(2):97–103

    Google Scholar 

  • Favati F, Lovelli S, Galgano F, Miccolis V, Di Tommaso T, Candido V (2009) Processing tomato quality as affected by irrigation scheduling. Sci Hortic 122(4):562–571

    Google Scholar 

  • Ghonaim, Mohamed HI, Omran AAA (2020) Evaluation of wheat salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-020-00981-w

    Article  Google Scholar 

  • Gulzar S, Khan MA, Ungar IA (2003) Salt tolerance of a coastal salt marsh grass. Soil Sci Plant Anal 34:2595–2605

    CAS  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Cicek N, Bag EG, Eraslan F, Guzelordu T (2005) Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize. Arch Agron Soil Sci 51:687–695

    CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shinwari ZK, Iqbal I, Sohn EY, Khan MA, Lee IJ (2010) Effect of salt stress on growth attributes and endogenous growth hormones of soybean cultivar Hwangkeumkong. Pak J Bot 42(5):3103–3112

    CAS  Google Scholar 

  • Helaly AA, Goda Y, Abd El-Rehim AS, Mohamed AA, El-Zeiny OAH (2017) Effect of irrigation with different levels of saline water type on husk tomato productivity. Adv Plants Agric Res 6(4):114–120

    Google Scholar 

  • Helmi A, Mohamed HI (2016) Biochemical and ulturasturctural changes of some tomato cultivars to infestation with Aphis gossypii Glover (Hemiptera: Aphididae) at Qalyubiya, Egypt. Gesunde Pflanzen 68:41–50

    CAS  Google Scholar 

  • Ho LC, Grange RI, Picken AJ (1987) An analysis of the accumulation of water and dry matter in tomato fruit. Plant Cell Environ 10:157–162

    Google Scholar 

  • Iqbal M, Niamatullah M, Mohammad D (2012) Effect of different doses of nitrogen on economical yield and physic-chemical characteristics of apple fruits. J Anil Plant Sci 22(1):165–168

    CAS  Google Scholar 

  • Jamali B, Eshghi S, Rad KS (2015) Growth and fruit characteristics of strawberry as affected by different application timing of salicylic acid under saline conditions. Int J Fruit Sci 15:339–352

    Google Scholar 

  • Kalarani MK, Thangaraj M, Sivakumar R, Mallika R (2002) Effects of salicylic acid on tomato (Lycopersicon esculentum Mill) productivity. Crop Res 23:486–492

    Google Scholar 

  • Karlidag H, Yildirim E, Turan M (2009) Salicylic acid ameliorates the adverse effect of salt stress on strawberry. J Agric Sci 66:271–278

    Google Scholar 

  • Kazemi M (2014) Foliar application of salicylic acid and methyl jasmonate on yield, yield components and chemical properties of tomato. Jordan J Agri Sci 10(4):771–778. https://doi.org/10.12816/0031770

    Article  Google Scholar 

  • Khan TN, Jeelani G, Tariq MS, Mahmood T, Hussain SI (2011) Effect of different concentrations of rooting hormones on growth of tomato cuttings “Solanum esculentus L.”. J Agric Res 49(2):241–247

    Google Scholar 

  • Khayat M, Tafazoli E, Eshghi S, Rahemi M, Rajaee S (2007) Salinity, supplementary calcium and potassium effects on fruit yield and quality of strawberry (Fragaria ananassa Duch). Am Eur J Agric Environ Sci 2(5):539–544

    Google Scholar 

  • Langenkamper G, Mchale R, Gardner RC, Macrae E (1998) Sucrose-phosphate synthase steady-state mRNA increases in ripening kiwifruit. Plant Mol Biol 36:857–869

    CAS  Google Scholar 

  • Latif H, Mohamed H (2016) Exogenous applications of moringa leaf extract effect on retrotransposon, ultrastructural and biochemical contents of common bean plants under environmental stresses. South Afr J Bot 106:221–231

    CAS  Google Scholar 

  • Mohamed HI, Gomaa EZ (2012) Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynt 50(2):263–272. https://doi.org/10.1007/s11099-012-0032-8

    Article  CAS  Google Scholar 

  • Mohamed H, Elsherbiny EA, Abdelhamid MT (2016) Physiological and biochemical responses of Vicia faba plants to foliar application with zinc and iron. Gesund Pflanz 68:201–212

    CAS  Google Scholar 

  • Mohamed HI, Akladious SA, El-Beltagi HS (2018) Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Fresenius Environ Bull 27:7054–7065

    CAS  Google Scholar 

  • Moustafa-Farag M, Mohamed HI, Mahmoud A, Elkelish A, Misra AN, Guy KM, Kamran M, Ai S, Zhan M (2020) Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants 9:724. https://doi.org/10.3390/plants9060724

    Article  Google Scholar 

  • Neves GYS, Marchiosi R, Ferrarese MLL, Soares CS, Filho OF (2010) Root growth inhibition and lignification induced by salt stress in soybean. J Agron Crop Sci 196:467–473

    CAS  Google Scholar 

  • Niu G, Rodriguez D, Dever J, Zhang J (2013) Growth and physiological responses of five cotton genotypes to sodium chloride and sodium sulfate saline water irrigation. J Cotton Sci 17(2):233–244

    CAS  Google Scholar 

  • Parvin K, Ahamed KU, Islam MM, Haque MN, Hore PK, Siddik MA, Roy I (2015) Reproductive behavior of tomato plant under saline condition with exogenous application of calcium. Middle East J Sci Res 23(12):2920–2926

    CAS  Google Scholar 

  • Petridis A, Therios I, Samouris G, Tananaki C (2012) Salinityinduced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environ Exp Bot 79:37–43

    CAS  Google Scholar 

  • Rady MM, Varma CB, Howladar SM (2013) Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stresses a result of presoaking in Moringa oleifera leaf extract. Sci Hortic 162:63–70. https://doi.org/10.1016/j.scienta.2013.07.046

    Article  CAS  Google Scholar 

  • Raiola A, Rigano MM, Calafiore R, Frusciante L, Barone A (2014) Enhancing the human-promoting effects of tomato fruit for biofortified food. Mediators Inflamm. https://doi.org/10.1155/2014/139873

    Article  Google Scholar 

  • Safdar H, Amin A, Shafiq Y, Ali A, Yasin R, Shoukat A et al (2019) A review: impact of salinity on plant growth. Nat Sci 17:34–40

    Google Scholar 

  • Saito T, Fukuda N, Matsukura C, Nishimura S (2009) Effect of salinity on distribution of photosynthetic and carbohydrate metabolism in tomato growing using nutrient film technique. J Jpn Soc Hortic Sci 78:90–96

    CAS  Google Scholar 

  • Shafiee M, Taghavi TS, Babalar M (2010) Addition of salicylic acid to nutrient solution combined with postharvesttreatments (hot water, salicylic acid, and calcium dipping) improvedpostharvest fruit quality of strawberry. Sci Hortic 124:40–45

    CAS  Google Scholar 

  • Shahid MA, Pervez MA, Balal RM, Mattson NS, Rashid R, Ahmad R, Ayyub CM, Abbas T (2011) 2 4‑epibrassinolide enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Aust J Crop Sci 5:500–510

    CAS  Google Scholar 

  • Sharaf AR, Hobson GE (1986) Effect of salinity on the yield and quality of normal and nonripening mutant tomatoes. Acta Hortic 190:175–181

    Google Scholar 

  • Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University press, Ames

    Google Scholar 

  • Sofy MR, Seleiman MF, Alhammad BA, Alharbi BM, Mohamed HI (2020) Minimizing adverse effects of pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agronomy 10:699. https://doi.org/10.3390/agronomy10050699

    Article  Google Scholar 

  • Suo J, Zhao Q, David L, Chen S, Dai S (2017) Salinity response in chloroplasts: insights from gene characterization. Int J Mol Sci 18:1011. https://doi.org/10.3390/ijms18051011

    Article  CAS  Google Scholar 

  • Szepesi A, Csiszar J, Bajkan S, Gemes K, Horvath F, Erdei L, Deer AK, Simon ML, Tari LI (2005) Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biolog Szegediens 49:123–125

    Google Scholar 

  • Tari I, Csiszár J, Horváth E, Poór P, Takács Z, Szepesi Á (2015) The alleviation of the adverse effects of salt stress in the tomato plant by salicylic acid shows a time-and organ-specific antioxidant response. Acta Biol Cracoviensia Bot 57(1):21–30

    CAS  Google Scholar 

  • Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmono B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59(2):173–178

    CAS  Google Scholar 

  • Zayton A, El-Shafei A, Allam K, Mourad M (2009) Effect of water salinity and potassium fertilizer levels on tomato productivity and water consumption in siwa oasis. Misr J Ag Eng 26(1):107–131. https://doi.org/10.21608/mjae.2009.109866

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

M. Naeem, A. Basit, I. Ahmad, H.I. Mohamed and H. Wasila declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, M., Basit, A., Ahmad, I. et al. Effect of Salicylic Acid and Salinity Stress on the Performance of Tomato Plants. Gesunde Pflanzen 72, 393–402 (2020). https://doi.org/10.1007/s10343-020-00521-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-020-00521-7

Keywords

Schlüsselwörter

Navigation