Evaluation of Genetic Diversity Among Exotic Sorghum (Sorghum bicolor L. Moench) Genotypes Through Molecular Based Analysis (RAPD-PCR)

  • Ali RazaEmail author
  • Farwa Ashraf
  • Sundas Saher Mehmood
  • Rao Sohail Ahmad Khan
Original Article


There is a remarkable diversity among sorghum species; hence it requires a powerful marker system for genome characterisation. RAPD (randomly amplified polymorphic DNA) is a very favourable technique used to distinguish the sorghum genotypes due to its clarity and speed. We observed genetic diversity among 30 sorghum (Sorghum bicolor L. Moench) genotypes using RAPD markers. Sixteen RAPD markers produced a total of 148 bands with a mean of 9.25 fragments per loci. Out of the 148, 132 bands showed polymorphism (89.19%), and 16 bands showed monomorphism (10.81%). PIC (polymorphism information content) values were varying from 0.2035 to 0.3438 with a mean of 0.2792. Genetic distance was ranged from 0.013 (for genotype 4 and 8) to 0.807 (for genotype 10 and 27). Cluster analysis exhibited that dendrogram consists of four major groups. Results represent that genotype 1, 3, 5, 15, 6, 11, 4, 8, 26, 29, 20, 24, 14, 25, 19, 23, 2 and 13 were closely related to each other, and genotype 10 was the most diverse genotype among all the studied genotypes by making an independent cluster. The first two factors of principal component analysis (PCA) PC1 (15.06) and PC2 (10.98) had the highest contribution in variability as 10.18 and 7.42%, respectively. Thus, sorghum genotypes can be isolated from each other at the molecular level by using molecular markers.


Cluster analysis Dendrogram Genetic distance Molecular markers Sorghum 

Bewertung der genetischen Vielfalt von exotischen Sorghum-Genotypen (Sorghum bicolor L. Moench) durch molekularbiologische Analyse (RAPD-PCR)


Es gibt eine bemerkenswerte Vielfalt unter den Sorghum-Arten. Daher ist ein leistungsfähiges Markersystem für die Charakterisierung des Genoms erforderlich. Die RAPD-Technik (RAPD: randomly amplified polymorphic DNA) ist aufgrund ihrer Eindeutigkeit und Schnelligkeit eine sehr günstige Methode, um die Sorghum-Genotypen zu unterscheiden. Wir analysierten die genetische Diversität von 30 Sorghum-Genotypen (Sorghum bicolor L. Moench) unter Verwendung von RAPD-Markern. 16 RAPD-Marker erzeugten insgesamt 148 Banden mit einem Mittelwert von 9,25 Fragmenten pro Loci. Von den 148 zeigten 132 Banden Polymorphismus (89,19 %) und 16 Banden Monomorphismus (10,81 %). Die PIC-Werte (PIC: polymorphism information content) variierten von 0,2035 bis 0,3438, mit einem Mittelwert von 0,2792. Der genetische Abstand lag zwischen 0,013 (für Genotyp 4 und 8) und 0,807 (für Genotyp 10 und 27). Die Clusteranalyse zeigte, dass das Dendrogramm aus vier Hauptgruppen besteht. Die Ergebnisse weisen darauf hin, dass die Genotypen 1, 3, 5, 15, 6, 11, 4, 8, 26, 29, 20, 24, 14, 25, 19, 23, 2 und 13 eng miteinander verwandt waren. Genotyp 10 unterschied sich am meisten von allen anderen untersuchten Genotypen; er bildet ein unabhängiges Cluster. Die ersten beiden Faktoren der Hauptkomponentenanalyse (principal component analysis, PCA) PC1 (15.06) und PC2 (10.98) hatten mit 10,18 % bzw. 7,42 % den höchsten Beitrag zur Varianz. Somit können Sorghum-Genotypen auf molekularer Ebene unter Verwendung molekularer Marker voneinander isoliert werden.


Clusteranalyse Dendrogramm Genetischer Abstand Molekulare Marker Sorghum 



The authors are grateful to all members of the Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan for their support and motivation to conduct this study.

Conflict of interest

A. Raza, F. Ashraf, S.S. Mehmood and R.S.A. Khan declare that they have no competing interests.


  1. Abdel-Mawgood AL (2012) DNA based techniques for studying genetic diversity. In: Genetic diversity in microorganisms. InTech, InGoogle Scholar
  2. Addinsoft SARL (2019) XLSTAT software, version 9.0. Addinsoft. Addinsoft SARL, Paris ( Scholar
  3. Adugna A (2014) Analysis of in situ diversity and population structure in Ethiopian cultivated Sorghum bicolor (L.) landraces using phenotypic traits and SSR markers. Springerplus 3:212CrossRefGoogle Scholar
  4. Agrama H, Tuinstra M (2003) Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. Afr J Biotechnol 2:334–340CrossRefGoogle Scholar
  5. Akhare AA, Sakhare S, Kulwal P, Dhumale D, Kharkar A (2008) RAPD profile studies in sorghum for identification of hybrids and their parents. Int J Integ Biol 3:18–24Google Scholar
  6. Aliyu B, Ng N, Fawole I (2000) Inheritance of pubescences in crosses between Cowpea (Vigna unquiculata (L) WAIP) and V. Rhomboidea Burtt. Davy. Nig J Genet 15:9–14Google Scholar
  7. Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320CrossRefGoogle Scholar
  8. Assar A, Uptmoor R, Abdelmula A, Salih M, Ordon F, Friedt W (2005) Genetic variation in sorghum germplasm from Sudan, ICRISAT, and USA assessed by simple sequence repeats (SSRs). Crop Sci 45:1636–1644CrossRefGoogle Scholar
  9. Ayana A, Bekele E, Bryngelsson T (2000) Genetic variation in wild sorghum (Sorghum bicolor ssp. verticilliflorum (L.) Moench) germplasm from Ethiopia assessed by random amplified polymorphic DNA (RAPD). Hereditas 132:249–254CrossRefGoogle Scholar
  10. Baenziger S (2014) SSR and SRAP markers-based genetic diversity in sorghum (Sorghum bicolor (L.) Moench) accessions of Sudan. Int J Plant Breed Genet 8:89–99CrossRefGoogle Scholar
  11. Barnaud A, Deu M, Garine E, McKey D, Joly HI (2007) Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor Appl Genet 114:237–248CrossRefGoogle Scholar
  12. Bashasab R, Kuruvinashetti MS (2007) Genetic variability of sorghum charcoal rot pathogen (Macrophomina phaseolina) assessed by random DNA markers. Plant Pathol J 23:45–50CrossRefGoogle Scholar
  13. Bekele WA, Wieckhorst S, Friedt W, Snowdon RJ (2013) High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array. Plant Biottechnol J 11:1112–1125CrossRefGoogle Scholar
  14. Black WC, DuTeau NM, Puterka GJ, Nechols JR, Pettorini JM (1992) Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) to detect DNA polymorphisms in aphids (Homoptera: Aphididae). Bull Entomol Res 82:151–159CrossRefGoogle Scholar
  15. Carvalho VP, Ruas CF, Ferreira JM, Moreira RM, Ruas PM (2004) Genetic diversity among maize (Zea mays L.) landraces assessed by RAPD markers. Genet Mol Biol 27:228–236CrossRefGoogle Scholar
  16. Ganapathy K et al (2012) Genetic diversity revealed utility of SSR markers in classifying parental lines and elite genotypes of sorghum (Sorghum bicolor L. Moench). Aus J Crop Sci 6:1486Google Scholar
  17. Geleta N, Labuschagne MT, Viljoen CD (2006) Genetic diversity analysis in sorghum germplasm as estimated by AFLP, SSR and morpho-agronomical markers. Biodivers Conserv 15:3251–3265CrossRefGoogle Scholar
  18. GoP (2016) Economic survey of Pakistan, 2015–16. Government of Pakistan. Economic Affairs Division, Ministry of Finance, Economic Advisor’s Wing, Islamabad, Pakistan.Google Scholar
  19. Habib N, Tahir A, Ain Q (2013) Current situation and future outlook of sorghum area and production in Pakistan. Asian J Agric Rural Develop 3:283Google Scholar
  20. Hariprasanna K, Patil J (2015) Sorghum: origin, classification, biology and improvement. In: Sorghum molecular breeding. Springer, Berlin Heidelberg, pp 3–20CrossRefGoogle Scholar
  21. Janda K, Kristoufek L, Zilberman D (2012) Biofuels: policies and impacts. Agric Econ 58:372–386Google Scholar
  22. Kamala V, Bramel P, Sivaramakrishnan S, Chandra S, Kannan S, Harikrishna S, Rao DM (2006) Genetic and phenotypic diversity in downy-mildew-resistant sorghum (Sorghum bicolor (L.) Moench) germplasm. Genet Resour Crop Evol 53:1243–1253CrossRefGoogle Scholar
  23. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129CrossRefGoogle Scholar
  24. Lázaro A, Aguinagalde I (1998) Genetic diversity in Brassica oleracea L.(Cruciferae) and wild relatives (2 n= 18) using RAPD markers. Ann Bot 82:829–833CrossRefGoogle Scholar
  25. Mace ES et al (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26CrossRefGoogle Scholar
  26. Mehmood S, Bashir A, Ahmad A, Akram Z, Jabeen N, Gulfraz M (2008) Molecular characterization of regional Sorghum bicolor varieties from Pakistan. Pak J Bot 40:2015–2021Google Scholar
  27. Menz MA, Klein RR, Unruh NC, Rooney WL, Klein PE, Mullet JE (2004) Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR markers. Crop Sci 44:1236–1244CrossRefGoogle Scholar
  28. Mutegi E et al (2011) Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers. Theor Appl Genet 122:989–1004CrossRefGoogle Scholar
  29. Nkongolo K, Nsapato L (2003) Genetic diversity in Sorghum bicolor (L.) Moench accessions from different ecogeographical regions in Malawi assessed with RAPDs. Genetic Resour Crop Evol 50:149–156CrossRefGoogle Scholar
  30. Olani Nagara G (2017) Genetic diversity analysis of sorghum [Sorghum bicolor (L.) Moench] races in Ethiopia using SSR markers. Addis Ababa University, Main Campus, Addis Ababa, EthiopiaGoogle Scholar
  31. Prakash SJ, Biji K, Gomez SM, Murthy KG, Babu RC (2006) Genetic diversity analysis of sorghum (Sorghum bicolor L. Moench) accessions using RAPD markers. Ind J Crop Sci 1:109–112Google Scholar
  32. Ramu P, Billot C, Rami J‑F, Senthilvel S, Upadhyaya H, Reddy LA, Hash CT (2013) Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theor Appl Genet 126:2051–2064CrossRefGoogle Scholar
  33. Ratnavathi C, Patil JV, Chavan U (2016) Sorghum biochemistry: an industrial perspective. Academic Press, Elsevier, UKGoogle Scholar
  34. Raza A, Mehmood SS, Ashraf F, Khan RS (2019b) Genetic diversity analysis of Brassica species using PCR-based SSR markers. Gesunde Pflanz 71:1–7CrossRefGoogle Scholar
  35. Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019a) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34CrossRefGoogle Scholar
  36. Raza A, Shaukat H, Ali Q, Habib M (2018) Assessment of RAPD markers to analyse the genetic diversity among Sunflower (Helianthus annuus L.) genotypes. Turk J Agric Food Sci Technol 6:107–111Google Scholar
  37. Reddy BV, Ashok Kumar A, Reddy SP (2008) Genetic improvement of sorghum in the semi-arid tropics. In: Sorghum Improvement in the New Millennium. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India, pp. 105–123Google Scholar
  38. Shengwu H, Ovesna J, Kucera L, Kucera V, Vyvadilova M (2003) Evaluation of genetic diversity of Brassica napus germplasm from China and Europe assessed by RAPD markers. Plant Soil Environ 49:106–113Google Scholar
  39. Sifau M, Oduoye O, Oluwasanya O, Aladele S (2017) Assessment of genetic variability in sorghum accessions (Sorghum bicolor L. Moench) at the national centre for genetic resources and biotechnology, Ibadan. Nig J Appl Sci Environ Manag 21:1143–1147Google Scholar
  40. Sinha S, Kumaravadivel N, Eapen S (2014) RAPD Analysis in Sorghum [Sorghum bicolor (L.) Moench] Accessions. Int J Bio-resour Stress Manag 5:381–385CrossRefGoogle Scholar
  41. Tao Y, Manners J, Ludlow M, Henzell R (1993) DNA polymorphisms in grain sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 86:679–688CrossRefGoogle Scholar
  42. Taramino G, Tarchini R, Ferrario S, Lee M (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72CrossRefGoogle Scholar
  43. Upadhyaya HD, Wang Y‑H, Gowda C, Sharma S (2013) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet 126:2003–2015CrossRefGoogle Scholar
  44. Uptmoor R, Wenzel W, Friedt W, Donaldson G, Ayisi K, Ordon F (2003) Comparative analysis on the genetic relatedness of Sorghum bicolor accessions from Southern Africa by RAPDs, AFLPs and SSRs. Theor Appl Genet 106:1316–1325CrossRefGoogle Scholar
  45. Wang Y‑H, Upadhyaya HD, Kole C (2014) Genetics, genomics and breeding of sorghum. CRC Press, Taylor & Francis group, Boca RatonCrossRefGoogle Scholar
  46. Wiley EO, Lieberman BS (2011) Phylogenetics: theory and practice of phylogenetic systematics. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  47. Yeh F, Yang R, Boyle T, Ye Z, Mao J (2002) Popgen 32, microsoftware windows based freeware for population genetic analysis. Molecular Biology and Biotechnology Center, EdmontonGoogle Scholar
  48. Yue Y, Singh H, Singh B, Mani S (2017) Torrefaction of sorghum biomass to improve fuel properties. Bioresour Technol 232:372–379CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Ali Raza
    • 1
    • 2
    Email author
  • Farwa Ashraf
    • 1
  • Sundas Saher Mehmood
    • 1
    • 2
  • Rao Sohail Ahmad Khan
    • 1
  1. 1.Centre of Agricultural Biochemistry and Biotechnology (CABB)University of AgricultureFaisalabadPakistan
  2. 2.Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research InstituteChinese Academy of Agricultural Sciences (CAAS)WuhanChina

Personalised recommendations