Gesunde Pflanzen

, Volume 70, Issue 2, pp 65–74 | Cite as

Phytochemical Composition and Potential Use of Rubus Species

  • Brigitte Liliana Moreno-Medina
  • Fánor Casierra-Posada
  • Joseph Cutler
Review Article
  • 51 Downloads

Abstract

Plants produce a number of compounds that are vital to the growth and development processes (primary metabolites) of cells and plant health. In addition to this type of metabolism, plants perform various processes that lead to taxonomically specific formation of compounds (secondary metabolites) that are a vital part of the human diet. Historically, plants have been used for their multiple benefits for the prevention and treatment of diseases. Rubus species are cultivated on all continents, at various altitudes, from temperate forests to tropical climates, and have edible and economically important fruits. The present review describes the polyphenols as the group of chemical substances that is most frequently found in species of the genus Rubus. Additionally, reference is made to nutritional components such as proteins, fats, calories, vitamins, fiber and minerals. Biochemical characteristics such as pH, total soluble solids and titratable acidity, and phytochemical compounds such as fatty acids, anthocyanins, total phenols, ellagitannis and saponins, among others, are presented. The uses of these compounds found in fruits, leaves, stems and seeds of Rubus species plants are considered, in regard to prevention and management of diseases and agroindustrial and pharmaceutical potential.

Keywords

Polyphenols Anthocyanins Antioxidants Nutrients Phytochemicals 

Phytochemische Zusammensetzung und mögliche Verwendung von Rubus-Arten

Zusammenfassung

Pflanzen produzieren eine Anzahl von Verbindungen, die mit den Wachstums- und Entwicklungsprozessen (Primärmetaboliten) in Verbindung stehen, die für das Zell- und Pflanzenleben grundlegend sind. Parallel zu dieser Art von Metabolismus führen Pflanzen verschiedene Prozesse durch, die zu einer taxonomisch spezifischen Bildung von Verbindungen (Sekundärmetaboliten) führen, die ein wichtiger Bestandteil der menschlichen Ernährung sind. In der Vergangenheit wurden Pflanzen aufgrund ihrer vielfältigen Vorteile zur Vorbeugung und Behandlung von Krankheiten eingesetzt. Rubus-Arten werden auf allen Kontinenten, in verschiedenen Höhen, von gemäßigten Wäldern bis zu tropischen Klimazonen kultiviert und haben essbare und wirtschaftlich wichtige Früchte. Die vorliegende Übersicht beschreibt die Polyphenole als die Gruppe der chemischen Substanzen, die am häufigsten in Arten der Gattung Rubus gefunden wird. Zusätzlich wird Bezug genommen auf Nahrungsbestandteile wie Proteine, Fette, Kalorien, Vitamine, Ballaststoffe und Mineralien. Ebenso werden biochemische Eigenschaften wie pH, gesamtlösliche Feststoffe und titrierbare Säure und phytochemische Verbindungen wie Fettsäuren, Anthocyanine, Gesamtphenole, Ellagitannis und Saponine vorgestellt. Schließlich werden die Anwendungen dieser Verbindungen bei der Vorbeugung und Behandlung von Krankheiten in Betracht gezogen, wenn diese Substanzen in Früchten, Blättern, Stängeln und Samen von Rubus-Arten vorkommen. Auf diese Weise kann auf das agroindustrielle und pharmazeutische Potenzial dieser Arten geschlossen werden.

Schlüsselwörter

Polyphenole Anthocyane Antioxidantien Nährstoffe Phytochemikalien 

Notes

Acknowledgements

This work was supported by Colciencias and Gobernación de Boyacá, Call 733/2015.

Conflict of interest

B.L. Moreno-Medina, F. Casierra-Posada and J. Cutler declare that they have no competing interests.

References

  1. Agronet (2017) Estadísticas. http://www.agronet.gov.co/estadistica/Paginas/default.aspx. Accessed 9 Dec 2017Google Scholar
  2. Alagić S, Stankov V, Mitić V, Cvetković J, Petrović G, Stojanović G (2016) Bioaccumulation of HMW PAHs in the roots of wild blackberry from the Bor region (Serbia): phytoremediation and biomonitoring aspects. Sci Total Environ 562:561–570.  https://doi.org/10.1016/j.scitotenv.2016.04.063 CrossRefPubMedGoogle Scholar
  3. Alice LA (2002) Evolutionary relationships in Rubus (Rosaceae) based on molecular data. Acta Hortic 585:79–83.  https://doi.org/10.17660/ActaHortic2002.585.9 CrossRefGoogle Scholar
  4. Alice LA, Campbell CS (1999) Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Am J Bot 86:81–97CrossRefPubMedGoogle Scholar
  5. Araujo L, Buitrago D, Marquina M, Morales N, Méndez G, Pernía T, Sosa M (2002) Comparación de la actividad anti-inflamatoria de los polifenoles presentes en las frutas; Mora (Rubus fruticosus B.), Fresa (Fragaria vesca L.) y Grapefruit (Citrus paradasi M). Rev Fac Farm 44:64–69Google Scholar
  6. Ayala LC, Valenzuela C, Bohórquez Y (2013) Caracterización fisicoquímica de mora de castilla (Rubus glaucus Benth) en seis estados de madurez. Biotecnol Sect Agropecu Agroind 11(2):10–18Google Scholar
  7. Azcón-Bieto J, Talón M (2008) Fundamentos de Fisiología Vegetal. Interamericana-McGraw-Hill, MadridGoogle Scholar
  8. Ballington JR, Luteyn MM, Thompson K, Romoleroux K, Castillo R (1993) Rubus and Vacciniaceous germplasm resources in the Andes of Ecuador. Plant Genet Resour Newsl 93:9–15Google Scholar
  9. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26.  https://doi.org/10.1038/ja.2005.1 CrossRefPubMedGoogle Scholar
  10. Bobinaité R, Viškelis P, Venskutonis R (2012) Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem 132:1495–1501.  https://doi.org/10.1016/j.foodchem.2011.11.137 CrossRefPubMedGoogle Scholar
  11. Bobinaité R, Viškelis P, Venskutonis R (2016) Chemical composition of raspberry (Rubus spp.) cultivars. In: Simmonds M, Preedy V (eds) Nutritional composition of fruits cultivars. Academic Press, San Diego  https://doi.org/10.1016/B978-0-12-408117-8.00029-5 Google Scholar
  12. Bushway L, Pritts M, Handley D (2008) Raspberry & blackberry production guide. NRAES, Ithaca, New YorkGoogle Scholar
  13. Buttriss J (2000) Nutrient requirements and optimization of intakes. Brit Med Bull 56(1):18–33CrossRefPubMedGoogle Scholar
  14. Cancino O, Sanchez L, Quevedo E, Díaz C (2011) Caracterización fenotípica de accesiones de especies de Rubus L. de los municipios de Pamplona y Chitagá, Región Nororiental de Colombia. Univ Sci 16(3):219–233CrossRefGoogle Scholar
  15. Castellanos E (2008) La nutrición, su relación con la respuesta inmunitaria y el estrés oxidativo. Rev Habanera Cien Med 7(4):1–12Google Scholar
  16. Cerón A, Osorio O, Hurtado A (2012) Identificación de ácidos grasos contenidos en los aceites extraídos a partir de semillas de tres diferentes especies de frutas. Acta Agron 61(2):126–132Google Scholar
  17. FAO (Food and Agriculture Organization) (2017) Faostat. http://www.fao.org/faostat/es/#data/QC. Accessed 9 Dec 2017Google Scholar
  18. Ferreira V, Bergman I (2008) Teores de proteína e minerais de espécies nativas, potenciais hortaliças e frutas. Cien Tecnol Alime 28(4):846–857CrossRefGoogle Scholar
  19. Gandhi S, Mahajan V, Bedi Y (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241(2):303–317.  https://doi.org/10.1007/s00425-014-2232-x CrossRefPubMedGoogle Scholar
  20. García D (2004) Los metabolitos secundarios de las especies vegetales. Pasto Forraj 27(1):1–12Google Scholar
  21. García D, Viloria-Matos A, Belén D, Moreno-Álvarez M (2003) Características físico-químicas y composición de ácidos grasos del aceite crudo extraído de residuos de mora (Rubus glaucus Benth). Grasa Aceit 54(3):259–263Google Scholar
  22. Garzón L, Gómez C (2015) Caracterización bromatológica y microbiológica de cultivos de la mora de castilla sin espinas (Rubus glaucus Benth) del corregimiento de la Bella y del municipio de Santa Rosa de Cabal (Risaralda, Colombia). Universidad Tecnológica de Pereira, ColombiaGoogle Scholar
  23. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414.  https://doi.org/10.1038/nchembio.2007.5 CrossRefPubMedGoogle Scholar
  24. Ghalayini IF, Al-Ghazo MA, Harfeil MN (2011) Prophylaxis and therapeutic effects of raspberry (Rubus idaeus) on renal stone formation. Int Braz J Urol 37:259–266CrossRefPubMedGoogle Scholar
  25. Grajales-Conesa J, Meléndez-Ramírez V, Cruz-López L (2011) Aromas florales y su interacción con los insectos polinizadores. Rev Mex Biodivers 82(4):1356–1367Google Scholar
  26. Guedes M, Abreu C, Maro L, Pio R, Abreu J, Oliveira J (2013) Chemical characterization and mineral levels in the fruits of blackberry cultivars grown in a tropical climate at an elevation. Acta Sci Agron 35(2):191–196.  https://doi.org/10.4025/actasciagron.v35i2.16630 CrossRefGoogle Scholar
  27. Gómez-Romero M, Segura-Carretero A, Fernández-Gutiérrez A (2010) Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry 71(16):1848–1864.  https://doi.org/10.1016/j.phytochem.2010.08.002 CrossRefPubMedGoogle Scholar
  28. Halvorsen BL, Carlsen MH, Phillips KM, Boehn SK, Holte K, Jacobs DR, Blomhoff R (2006) Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am J Clin Nutr 84:95–135CrossRefPubMedGoogle Scholar
  29. Hernández M (2004) Recomendaciones nutricionales para el ser humano: actualización. Rev Cuba Investig Biomed 3(4):266–292Google Scholar
  30. Instituto de Nutrición de Centro América y Panamá INCAP (2012) Tabla de composición de alimentos de Centroamérica, 2nd edn. Serviprensa, GuatemalaGoogle Scholar
  31. Johnson JL, Bomser JA, Scheerens JC, Giusti MM (2011) Effect of black raspberry (Rubus occidentalis L.) extract variation conditioned by cultivar, production site, and fruit maturity stage on colon cancer cell proliferation. J Agric Food Chem 59:1638–1645.  https://doi.org/10.1021/jf1023388 CrossRefPubMedGoogle Scholar
  32. Kalkman C (2004) Rosaceae. In: Kibitzki k (ed) The families and genera of vascular plants, vol IV. Springer, Berlin, Heidelberg, New York., pp 343–386Google Scholar
  33. Kassim A, Poette J, Paterson A, Zait D, McCallum S, Woodhead M, Smith K, Hackett C, Graham J (2009) Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Mol Nutr Food Res 53:625–634.  https://doi.org/10.1002/mnfr.200800174 CrossRefPubMedGoogle Scholar
  34. Kim JE, Kwon JY, Seo SK, Son JE, Jung SK, Min SY, Hwang MK, Heo YS, Lee KW, Lee HJ (2010) Cyanidin suppresses ultraviolet B‑induced COX-2 expression in epidermal cells by targeting MKK4, MEK1, and Raf-1. Biochem Pharmacol 79:1473–1482.  https://doi.org/10.1016/j.bcp.2010.01.008 CrossRefPubMedGoogle Scholar
  35. Koponen JM, Happonen AM, Mattila PH, Torronen AR (2007) Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem 55:1612–1619CrossRefPubMedGoogle Scholar
  36. Law MR, Morris JK (1998) By how much does fruit and vegetable consumption reduce the risk of ischaemic heart disease? Eur J Clin Nutr 52:549–556CrossRefPubMedGoogle Scholar
  37. Lee S, Kader A (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20(3):207–220.  https://doi.org/10.1016/S0925-5214(00)00133-2 CrossRefGoogle Scholar
  38. Lugasi A, Hovari J, Kadar G, Denes S (2011) Phenolics in raspberry, blackberry and currant cultivars grown in Hungary. Acta Aliment Hung 40:52–64.  https://doi.org/10.1556/AAlim.40.2011.1.8 CrossRefGoogle Scholar
  39. Markakis P (1982) Anthocyanins as food colors. Academic Press, New YorkGoogle Scholar
  40. Miret J, Munné-Bosch S (2016) Abscisic acid and pyrabactin improve vitamin C contents in raspberries. Food Chem 203:216–223.  https://doi.org/10.1016/j.foodchem.2016.02.046 CrossRefPubMedGoogle Scholar
  41. Moraes M, Mostacedo B, Zapata B, Altamirano S (2009) Libro rojo de parientes silvestres de cultivos de Bolivia. Plural Editores, La PazGoogle Scholar
  42. Moreno J, Bueno J, Navas J, Camacho F (1990) Tratamiento de las ulceras cutáneas con aceite de rosa mosqueta. Med Cutan Ibero Lat Am 18(1):63–66Google Scholar
  43. Moreno-Medina BL, Deaquiz Y (2016) Caracterización de parámetros fisicoquímicos en frutos de mora (Rubus alpinus Macfad). Acta Agron 65(2):130–136.  https://doi.org/10.15446/acag.v65n2.45587 CrossRefGoogle Scholar
  44. Moyer R, Hummer K, Finn C, Frei B, Wrolstad R (2002) Anthocyanins, Phenolics, and antioxidant Capacity in Diverse Small Fruits:  Vaccinium, Rubus, and Ribes. J Agric Food Chem 50(3):519–525.  https://doi.org/10.1021/jf011062r CrossRefPubMedGoogle Scholar
  45. Nogueiraa E, Rosab G, Vassilieffa V (1998) Involvement of GABA A‑benzodiazepine receptor in the anxiolytic effect induced by hexanic fraction of Rubus brasiliensis. J Ethnopharmacol 61(2):119–126.  https://doi.org/10.1016/S0378-8741(98)00023-3 CrossRefGoogle Scholar
  46. Pariza MW, Park Y, Cook ME (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40(4):283–298.  https://doi.org/10.1016/S0163-7827(01)00008-X CrossRefPubMedGoogle Scholar
  47. Rao V, Snyder D (2010) Raspberries and human health: a review. J Agric Food Chem 58(7):3871–3883.  https://doi.org/10.1021/jf903484g CrossRefPubMedGoogle Scholar
  48. Rincón C, Moreno-Medina BL, Deaquiz Y (2015) Parámetros poscosecha en dos materiales de mora (Rubus Glaucus Benth y Rubus Alpinus Macfad). Cult Cient 13:16–25Google Scholar
  49. Rojas-Vera J, Patel A, Dacke C (2002) Relaxant activity of raspberry (Rubus idaeus) leaf extract in guinea-pig ileum in vitro. Phytother Res 16(7):665–668.  https://doi.org/10.1002/ptr.1040 CrossRefPubMedGoogle Scholar
  50. Rotundo A, Bounous S, Benvenuti G, Vampa M, Melegari, Soragni F (1998) Quality and yield of Ribes and Rubus cultivars grown in southern Italy hilly locations. Phytother Res 12:135–137CrossRefGoogle Scholar
  51. Seeram NP (2006) Bioactive polyphenols from foods and dietary supplements: challenges and opportunities. In: Wang M, Sang S, Hwang LS, Ho Chi-Tang (eds) Herbs: challenges in Chemistry and Biology. American Chemical Society  https://doi.org/10.1021/bk-2006-0925 Google Scholar
  52. Seeram NP (2008) Berry Fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56(3):627–629.  https://doi.org/10.1021/jf071988k CrossRefPubMedGoogle Scholar
  53. Sepúlveda J, Porta D, Rocha S (2003) La participación de los metabolitos secundarios en la defensa de las plantas. Rev Mex Fitopatol 21(3):355–363Google Scholar
  54. Shu-Feng T, Hui-Jun Z, Jian-Guang L, Ling-Yi K (2015) Triterpenes and triterpene glucosides with their oxidative stress injury protective activity from Rubus lambertianus. Phytochem Lett 12:1–5.  https://doi.org/10.1016/j.phytol.2015.02.001 CrossRefGoogle Scholar
  55. Silva-Adame M, Pedraza-Arriola L, Garcia-Saucedo P (2013) Zarzamoras silvestres: Plantas mexicanas con potencial antimicrobiano. Memorias X encuentro de la mujer en la ciencia, México, 15.05-17.05.2013. pp 1–5. http://congresos.cio.mx/memorias_congreso_mujer/archivos/extensos/sesion5/S5-BCA19.pdf. Accessed 9 Dec 2017Google Scholar
  56. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, SunderlandGoogle Scholar
  57. Takashi S, Takashi T, Osamu T, Naohiro N (1984) β‑Glucosyl esters of 19α-hydroxyursolic acid derivatives in leaves of Rubus species. Phytochemistry 23(12):2829–2834.  https://doi.org/10.1016/0031-9422(84)83023-X CrossRefGoogle Scholar
  58. Thinquino B (1993) Terapias Naturales. Publicaciones Latinoamericanas Rayos de Luz, BogotáGoogle Scholar
  59. Trivedi A, Vermaa SK, Tyagi RK (2016) Variability in morpho-physiological traits and antioxidant potential of Rubus species in Central Himalayan Region. Ind Crops Prod 82:1–8.  https://doi.org/10.1016/j.indcrop.2015.12.022 CrossRefGoogle Scholar
  60. Valencia C, Guevara A (2013) Elaboración de néctar de zarzamora (Rubus fructicosus L.). Sci Agropecu 4(2):101–109.  https://doi.org/10.17268/sci.agropecu.2013.02.03 CrossRefGoogle Scholar
  61. Van der Sluis AA, Dekker M, De Jager A, Jongen WM (2001) Activity and concentration of polyphenolic antioxidants in apple: effects of cultivar, harvest year, and storage conditions. J Agric Food Chem 49:3606–3613CrossRefPubMedGoogle Scholar
  62. Wang SY, Lin HS (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48(2):140–146CrossRefPubMedGoogle Scholar
  63. Wang SY, Zheng W (2001) Effect of plant growth temperature on antioxidant capacity in strawberry. J Agric Food Chem 49(10):4977–4982CrossRefPubMedGoogle Scholar
  64. Wang B‑G, Zhu W‑M, Li X‑M, Jia Z‑J, Hao X‑J (2000) Rubupungenosides A and B, two novel triterpenoid saponin dimers from the aerial parts of Rubus pungens. J Nat Prod 63:851–854.  https://doi.org/10.1021/np990473n CrossRefPubMedGoogle Scholar
  65. Weihua N, Zhang X, Hongtao B, Jeff I, Li J, Chengxin S, Jinbo F, Guihua T, Yifa Z, Jimin Z (2009) Preparation of a glucan from the roots of Rubus crataegifolius Bge. and its immunological activity. Carbohydr Res.  https://doi.org/10.1016/j.carres.2009.08.042 Google Scholar
  66. Zhang TT, Lu CL, Jiang JG, Wang M, Wang DM, Zhu W (2015) Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu. Carbohydr Polym 130:307–315.  https://doi.org/10.1016/j.carbpol.2015.05.012 CrossRefPubMedGoogle Scholar
  67. Zhang Z, Knobloch TJ, Seamon LG, Stoner GD, Cohn DE, Paskett ED, Fowler JM, Weghorst CM (2011) A black raspberry extract inhibits proliferation and regulates apoptosis in cervical cancer cells. Gynecol Oncol 123(2):401–406.  https://doi.org/10.1016/j.ygyno.2011.07.023 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zheljazkov VD, Cerven V, Cantrell CL, Ebelhar WM, Horgan T (2009) Effect of nitrogen, location and harvesting stage on peppermint productivity, oil content, and oil composition. Hortic Sci 44(5):1267–1270Google Scholar
  69. Ziller S (1994) Grasas y aceites alimentarios, 7th edn. Ed. Acribia, ZaragozaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Brigitte Liliana Moreno-Medina
    • 1
  • Fánor Casierra-Posada
    • 2
  • Joseph Cutler
    • 3
  1. 1.Faculty of SciencesUniversidad Pedagógica y Tecnológica de Colombia (UPTC)TunjaColombia
  2. 2.Faculty of Agricultural Sciences, Research Group in Plant EcophysiologyUniversidad Pedagógica y Tecnológica de Colombia (UPTC)TunjaColombia
  3. 3.Lebenswissenschaftliche Fakultät, Fachgebiet PhytomedizinHumboldt UniversitätBerlinGermany

Personalised recommendations