Evaluation of Inhibitory Effect of Some Bicarbonate Salts and Fungicides Against Hazelnut Powdery Mildew

Bewertung der hemmenden Wirkung einiger Carbonate und Fungizide gegen den Echten Mehltau der Haselnuss

Abstract

Hazelnut (Corylus avellana L.) which is intensively grown in the Black Sea region is the most important agricultural product of Turkey. Hazelnut production and quality are negatively affected by several diseases and pests. Powdery mildew is nowadays one of the most common diseases in almost whole hazelnut producing areas. The disease is caused by two different species, Phyllactinia guttata (Wallr. et Lev.) Fr. and Erysiphe corylacearum U. Braun & S. Takam. For the last 4 years, E. corylacearum, a newly invasive fungus in Turkey, has been caused significant economic losses. In the present study, the efficacy of ammonium, potassium and sodium bicarbonates, and two fungicides were evaluated in field trials against powdery mildew on hazelnuts in Samsun in 2016. The application rates of compounds used in the experiment were as follows: ammonium, potassium and sodium bicarbonates (Sigma-Aldrich, Seelze, Germany) at 1.5, 3, 4.5 and 6% (w/v); Collis® SC (100 g/l Kresoxim methyl +200 g/l Boscalid, BASF, Spain) at 30 ml/100 l and Sulflow® 80 WG (Sulphur 800 g/l, Agrofarm, Turkey) at 400 g/100 l. Of the compounds tested, except for fungicides, sodium was found to be the most effective in controlling the powdery mildew on hazelnuts, followed by potassium and ammonium, respectively. Among those three, ammonium bicarbonate was ineffective against fruit infections of the disease. There was also no significant difference between inhibitory effects of 6% sodium bicarbonate, Collis and Sulflow against the disease (P < 0.05). In addition, bicarbonate salts was phytotoxic to hazelnut leaves at concentrations greater than 1.5%. The results indicate that sodium or potassium bicarbonate solutions seems to be a useful biocompatible fungicide for controlling the powdery mildew on hazelnuts.

Zusammenfassung

Die Haselnuss (Corylus avellana L.) wird in der Mittelmeerregion intensiv angebaut und ist das wichtigste landwirtschaftliche Produkt der Türkei. Die Produktion und Qualität der Haselnüsse können von verschiedenen Krankheiten und Schädlingen negativ beeinflusst werden. Echter Mehltau ist heute eine der häufigsten Krankheiten in fast allen Haselnuss-Anbaugebieten. Die Krankheit wird von zwei verschiedenen Arten ausgelöst, Phyllactinia guttata (Wallr. et Lev.) Fr. und Erysiphe corylacearum U. Braun & S. Takam. In den letzten vier Jahren hat ein neuer invasiver Pilz, E. corylacearum, in der Türkei zu bedeutenden wirtschaftlichen Verlusten geführt. In der vorliegenden Studie wurde 2016 in Samsun die Wirksamkeit von Ammonium‑, Kalium- und Natriumbicarbonat sowie zweier Fungizide in Feldversuchen zur Behandlung von Echtem Mehltau bei Haselnüssen beurteilt. Die Ausbringungsraten der im Versuch verwendeten Verbindungen waren wie folgt: Ammonium‑, Kalium- und Natriumbicarbonate (Sigma-Aldrich, Seelze, Deutschland) zu je 1,5 %, 3 %, 4,5 % und 6 % (w/v); Collis® SC (100 g/l Kresoxim-Methyl + 200 g/l Boscalid, BASF, Spanien) zu je 30 ml/100 l und Sulflow® 80 WG (Schwefel 800 g/l, Agrofarm, Türkei) zu 400 g/100 l. Abgesehen von den Fungiziden zeigte sich Natriumbicarbonat bei den getesteten Verbindungen als effektivste Bekämpfung des Echten Mehltaus bei Haselnüssen, danach Kalium- und Ammoniumbicarbonat in dieser Reihenfolge. Bei den Bicarbonaten war Ammoniumbicarbonat gegen Fruchtinfektionen der Krankheit wirkungslos. Es konnte auch kein signifikanter Unterschied zwischen der inhibitorischen Wirkung von 6 % Natriumbicarbonat, Collis und Sulflow gegen die Krankheit festgestellt werden (P < 0,05). Zusätzlich waren Bicarbonatsalze in einer Konzentration von mehr als 1,5 % phytotoxisch für das Haselnusslaub. Die Ergebnisse zeigen, dass Natrium- oder Kaliumbicarbonat-Lösungen als biokompatible Fungizide zur Bekämpfung von Echtem Mehltau an Haselnüssen eingesetzt werden können.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Arslan U, Ilhan K, Karabulut OA (2006) Evaluation of food additives and low-toxicity compounds for the control of bean rust and wheat leaf rust. J Phytopathol 154:534–541

    CAS  Article  Google Scholar 

  2. Arslan U, Ilhan K, Karabulut OA (2013) Evaluation of the use of ammonium bicarbonate and oregano (Origanum vulgare ssp hirtum) extract on the control of apple scab. J Phytopathol 161(6):382–388

    CAS  Article  Google Scholar 

  3. Bremer H (1948) Türkiye Fitopatolojisi. Cilt II Özel Bölüm, Kısım:1. Güney Matbaacılık ve Gazetecilik T.A.O., Ankara

    Google Scholar 

  4. Campanella V, Ippolito A, Nigro F (2002) Activity of calcium salts in controlling Phytophthora root rot of citrus. Crop Prot 21:751–756

    CAS  Article  Google Scholar 

  5. Corral LG, Post LS, Montville TJ (1988) Antimicrobial activity of sodium bicarbonate. J Food Sci 53:981–982

    CAS  Article  Google Scholar 

  6. DePasquale DA, El-Nabarawy A, Rosen JD, Montville TJ (1990) Ammonium bicarbonate inhibition of mycotoxigenic fungi and spoilage yeasts. J Food Prot 4:282–350

    Google Scholar 

  7. Erper İ, Türkkan M, Karaca GH, Kılıç G (2012) New Hosts for Phyllactinia guttata in the Black Sea Region of Turkey. Scand J For Res 27(5):432–437

    Article  Google Scholar 

  8. FDA (2017) http://www.fda.gov/IngredientsPackaging. Accessed 1 Jan 2017

  9. Homma Y, Arimoto Y, Misato T (1981) Studies on the control of plant disease by sodium bicarbonate formulation (Part 2). Effect of sodium bicarbonate on each growth stage of cucumber powdery mildew fungus (Sphaerotheca fuliginea) in its life cycle. J Pestic Sci 6:201–209

    CAS  Article  Google Scholar 

  10. Horst RK, Kawamoto SO, Porter LL (1992) Effect of sodium bicarbonate and oils on the control of powdery mildew and black spot of roses. Plant Dis 76:247–251

    CAS  Article  Google Scholar 

  11. Ilhan K, Arslan U, Karabulut OA (2006) The effect of sodium bicarbonate alone or in combination with a reduced dose of tebuconazole on the control of apple scab. Crop Prot 25:963–967

    CAS  Article  Google Scholar 

  12. Jamar L, Lefrancq B, Lateur M (2007) Control of apple scab (Venturia inaequalis) with bicarbonate salts under controlled environment. J Plant Dis Prot 114(5):221–227

    CAS  Article  Google Scholar 

  13. Karaca G, Erper İ (2001) First Report of Pestalotiopsis guepinii causing twig blight on hazelnut and walnut in Turkey. Plant Pathology 50:415

    Article  Google Scholar 

  14. Kavková M, Čurn V, Kubátová B, Desprez-Loustau ML, Dutech C, Marcais B (2007) Oak powdery mildew (Mıcrosphaera Alphitoides): biology, epidemiology and potential control in europe. Commun Inst For Bohemicae 23:73–81

    Google Scholar 

  15. Köksal I (2000) Inventory of hazelnut research. http://www.fao.org/docrep/003/x4484e/x4484e00.htm. Accessed 5 May 2017

    Google Scholar 

  16. Latifa A, Idriss T, Hassan B, Amine SM, El Hassane B, Abdellah ABA (2011) Effects of organic acids and salts on the development of Penicillium italicum: the causal agent of citrus blue mold. Plant Pathol J 10:99–107

    CAS  Article  Google Scholar 

  17. Mcgrath MT, Shishkoff N (1999) Evaluation of biocompatible products for managing cucurbit powdery mildew. Crop Prot 18:471–478

    Article  Google Scholar 

  18. Olivier C, Halseth DE, Mizubuti ESG, Loria R (1998) Postharvest application of organic and inorganic salts for suppression of silver scurf on potato tubers. Plant Dis 82:213–217

    CAS  Article  Google Scholar 

  19. Palmer CL, Horst RK, Langhans RW (1997) Use of bicarbonates to inhibit in vitro colony growth of Botrytis cinerea. Plant Dis 81:1432–1438

    Article  Google Scholar 

  20. Pasini C, D’Aquila F, Curir P, Guliino ML (1997) Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Prot 16(3):251–256

    CAS  Article  Google Scholar 

  21. Punja ZK, Gaye MM (1993) Influence of postharvest handling practices and dip treatments on development of black root rot on fresh market carrots. Plant Dis 77:989–995

    CAS  Article  Google Scholar 

  22. Punja ZK, Grogan RG (1982) Effects of inorganic salts, carbonate-bicorbonate anions, ammonia, and the modifying influence of pH on sclerotial germination of Sclerotium rolfsii. Phytopathology 72:635–639

    CAS  Article  Google Scholar 

  23. Reuveni M, Oppenheim D, Reuveni R (1998) Integrated control of powdery mildew on apple trees by foliar sprays of mono-potassium phosphate fertilizer and sterol inhibiting fungicides. Crop Prot 17(7):563–568

    CAS  Article  Google Scholar 

  24. Reuveni R, Agapov V, Reuveni M, Raviv M (1994) Effect of foliar sprays of phosphates on powdery mildev (Sphaerotheca pannosa) of Roses. J Phytopathol 142:331–337

    Google Scholar 

  25. Sezer A, Dolar FS, Lucas SJ, Köse Ç, Gümüş E (2017) First report of the recently introduced, destructive powdery mildew Erysiphe corylacearum on hazelnut in Turkey. Phytoparasitica 45:577–581

    CAS  Article  Google Scholar 

  26. Snare, L. 2006. Pest and Disease Analysis in Hazelnuts. NWS Deparment of Primary Industries, Project No: NT05002. Horticulture Australia Ltd., Sydney, Australia 68p

  27. Sundheim L (1982) Control of cucumber powdery mildew by the hyperparasite Ampelomyces quisqualis and fungicides. Plant Pathology 31(3):209–214

    Article  Google Scholar 

  28. TAGEM 2016. General Directorate of Agricultural Research and Policies. http://www.tarim.gov.tr/TAGEM/Belgeler/Sitandard/Meyve-Bağ Hastalıkları Standart İlaç Deneme Metotları. Accessed 10 January 2016

  29. Toros S, ve Hancıoğlu Ö (1997) Fındık Zararlıları, Hastalıkları ve Mücadelesi. Ankara Üniversitesi Basımevi, Ankara

    Google Scholar 

  30. TUIK (2016) Agricultural Production Statistics of Turkish Statistical Institute. http://www.tuik.gov.tr/bitkiselapp/bitkisel.zul. Accessed 15 April 2016

    Google Scholar 

  31. Yıldırım I, Dardeniz A (2010) Effects of alternative spray programs and various combinationsof green pruning on powdery mildew [Uncinula necator (Schw.) Burr.] in Karasakız (Kuntra) grape cultivar. Turkish J Agric For 34:213–223

    Google Scholar 

  32. Yıldırım I, Onogur E, Irshad M (2002) Investigations on the efficacy of some natural chemicals against powdery mildew [Uncinula necator (Schw.) Burr.] of grape. J Phytopathol 150:697–702

    Article  Google Scholar 

  33. Yürüt HA, ve Erkal Ü (1994) Bolu ve Zonguldak illeri Fındık Bahçelerinde Çotanak Çürümeleri (Moniliacoryli, Botrytis spp.)’ne Karşı Mücadele Yöntemleri Üzerinde Araştırmalar. Zirai Mücadele Araştırma Enstitüsü, Ankara

    Google Scholar 

  34. Ziv O, Zitter TA (1992) Effects of bicarbonate and film-forming polymers on cucurbit foliar diseases. Plant Dis 76:513–517

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muharrem Türkkan.

Ethics declarations

Conflict of interest

M. Türkkan, İ. Erper, Ü. Eser and A. Baltacı declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Türkkan, M., Erper, İ., Eser, Ü. et al. Evaluation of Inhibitory Effect of Some Bicarbonate Salts and Fungicides Against Hazelnut Powdery Mildew. Gesunde Pflanzen 70, 39–44 (2018). https://doi.org/10.1007/s10343-017-0411-y

Download citation

Keywords

  • Hazelnut
  • Erysiphe corylacearum
  • Bicarbonates
  • Fungicides
  • Alternative control

Schlüsselwörter

  • Haselnuss
  • Erysiphe corylacearum
  • Bicarbonate
  • Fungizide
  • Alternativer Pflanzenschutz