Skip to main content
Log in

Effect of Iron Excess on Growth of Sisal Plants (Furcraea hexapetala)

Wirkung des Eisenüberschusses auf das Wachstum von Sisalpflanzen (Furcraea hexapetala)

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

In order to evaluate the effect of excess iron on the growth of sisal (Furcraea hexapetala) plants, an experiment was carried out in Tunja, Colombia, under greenhouse conditions. The plants were grown in a substrate in which 100, 150, 200 and 300 ppm of Fe were added. Control plants were provided without the addition of iron. The Chlorophyll Content Index, dry matter, and root to shoot ratio were gradually reduced as the Fe content in the substrate increased. Leaf area, relative growth rate, absolute growth rate, leaf area ratio and specific leaf area were significantly reduced with the higher doses of Fe. In addition, dry matter partitioning was altered in relation to the control plants and a lower allocation of dry matter in the roots of plants exposed to the higher Fe content was observed. Sisal plants are moderately tolerant to the excess Fe, however when exposed to 300 ppm of the metal, growth is drastically reduced.

Zusammenfassung

Um die Wirkung von überschüssigem Eisen auf das Wachstum von Sisal (Furcraea hexapetala) Pflanzen zu bewerten, wurde ein Experiment in Tunja, Kolumbien, unter Treibhausbedingungen durchgeführt. Die Pflanzen wurden in einem Substrat gezüchtet, in dem 100, 150, 200 und 300 ppm Fe zugegeben wurden, und es wurden Kontrollpflanzen ohne Zugabe von Eisen bereitgestellt. Als Ergebnis wurde festgestellt, dass der Chlorophyll-Inhaltsindex, die Trockenmasse und das Wurzel-zu-Punkt-Verhältnis allmählich verringert wurden, wenn der Fe-Gehalt in dem Substrat anstieg. Die Blattfläche, die relative Wachstumsrate, die absolute Wachstumsrate, das Blattflächenverhältnis und die spezifische Blattfläche wurden mit den höheren Dosen von Fe am deutlichsten reduziert. Darüber hinaus wurde der Trockenmasse-Partitionierung in Bezug auf die Kontrollpflanzen verändert und eine geringere Zuteilung der Trockenmasse in den Wurzeln von Pflanzen, die dem höheren Fe-Gehalt ausgesetzt waren, wurde beobachtet. Auf diese Weise wurde beobachtet, dass die Sisalpflanzen für das überschüssige Fe mäßig tolerant sind, aber wenn 300 ppm des Metalls ausgesetzt wurden, wurde der Wert der an dem Wachstum beteiligten Variablen drastisch reduziert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamski JM, Peters JA, Danieloski R, Bacarin MA (2011) Excess iron-induced changes in the photosynthetic characteristics of sweet potato. J Plant Physiol 168(17):2056–2062. doi:10.1016/j.jplph.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  • Adamski JM, Danieloski R, Deuner S, Braga EJB, de Castro LAS, Peters JA (2012) Responses to excess iron in sweet potato: impacts on growth, enzyme activities, mineral concentrations, and anatomy. Acta Physiol Plant 34(5):1827–1836. doi:10.1007/s11738-012-0981-3

    Article  CAS  Google Scholar 

  • Agronet (2017) Área, producción y rendimiento nacional por cultivo. http://www.agronet.gov.co/estadistica/Paginas/default.aspx. Accessed: 12 Apr 2017

    Google Scholar 

  • Arroyave PC, Velásquez DE (2001) Aprovechamiento integral de Furcraea macrophylla Backer. Universidad EAFIT. Departamento de Ingeniería de Procesos. Medellín, Colombia

  • Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10(3):276–282. doi:10.1016/j.pbi.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  • Casierra-Posada F, Pérez WA, Portilla F (2006) Relaciones hídricas y distribución de materia seca en especies de fique (Furcraea sp. Vent.) cultivadas bajo estrés por NaCl. Agron Colomb 24(2):280–289

    Google Scholar 

  • Casierra-Posada F, Gómez NE (2008) Crecimiento foliar y radical en plantas de fique (Furcraea castilla y F. macrophylla) bajo estrés por encharcamiento. Agron Colom 26(3):381–388

  • Casierra-Posada F, González DM (2009) Cambio circadiano de pH y acidez titulable en la savia de fique (Furcraea castilla y F. macrophylla). Orinoquia 13(1):5–13

    Google Scholar 

  • Casierra-Posada F, Carreño-Patiño A, Cutler J (2017) Growth, Fiber and Nitrogen content in Sisal plants (Furcraea sp) under NaCl salinity. Gesunde Pflanz 69(2):83–90. doi:10.1007/s10343-017-0390-z

    Article  CAS  Google Scholar 

  • Delgadillo L, Bañuelos R, Esparza EL, Gutiérrez H, Cabral FJ, Muro A (2015) Evaluación del perfil de nutrientes de bagazo de agave como alternativa de alimento para ruminates. Revista Mexicana de Ciencias Agrícolas 11: 2099–2103

  • Hunt R (1990) Basic growth analysis. Plant growth analysis for beginners. Unwin Hyman, Boston MA, p 112

    Book  Google Scholar 

  • Jeong J, Guerinot ML (2009) Homing in on iron homeostasis in plants. Trends Plant Sci 14(5):280–285. doi:10.1016/j.tplants.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ma H, Jia P, Wang J, Jia L, Zhang T, Yang Y, Chen H, Wei X (2012) Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Ecotoxicol Environ Saf 86:47–53. doi:10.1016/j.ecoenv.2012.09.010

    Article  CAS  PubMed  Google Scholar 

  • Li G, Xu W, Kronzucker HJ, Shi W (2015) Ethylene is critical to the maintenance of primary root growth and Fe homeostasis under Fe stress in Arabidopsis. J Exp Bot 66(7):2041–2054. doi:10.1093/jxb/erv005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez MA, Pacheco JC (2006) Protocolo para la micropropagación de Furcraea macrophylla Baker. Agron Colomb 24(2):207–213

    Google Scholar 

  • Mehraban P, Zadeh AA, Sadeghipour HR (2008) Iron toxicity in rice (Oryza sativa L.), under different potassium nutrition. Asian J Plant Sci 7:251–259

  • Minambiente (2006) Guía ambiental del subsector fiquero, 2nd edn. Ministerio de Ambiente, Vivienda y Desarrollo Territorial y Ministerio de Agricultura y Desarrollo Rural de Colombia, Santafé de Bogota, pp 25–27

    Google Scholar 

  • Nenova V (2006) Effect of iron supply on growth and photosystem II efficiency of pea plants. Gen Appl Plant Physiol 32:81–90

    Google Scholar 

  • Peña-Olmos JE, Casierra-Posada F (2013) Photochemical efficiency of photosystem II (PSII) in broccoli plants (Brassica oleracea var Italica) affected by excess iron. Orinoquia 17(1):15–22

    Google Scholar 

  • Peña-Olmos JE, Casierra-Posada F, Olmos-Cubides MA (2014) The effect of high iron doses (Fe2+) on the growth of broccoli plants (Brassica oleracea var. Italica). Agron Colomb 32(1):22–28

    Article  Google Scholar 

  • Pereira EG, Oliva MA, Rosado-Souza L, Mendes GC, Colares DS, Stopato CH, Almeida AM (2013) Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Sci 201–202:81–92. doi:10.1016/j.plantsci.2012.12.003

    Article  PubMed  Google Scholar 

  • Pugh RE, Dick DG, Fredeen AL (2002) Heavy metal (Pb, Zn, Cd, Fe and Cu) contents of plant foliage near the Anvil range lead/zinc mine, Faro, Yukon territory. Ecotoxicol Environ Saf 52(3):273–279. doi:10.1006/eesa.2002.2201

    Article  CAS  PubMed  Google Scholar 

  • Samaranayake S, Peiris BD, Dssanayake S (2012) Effect of excessive ferrous (Fe2+) on growth and iron content in rice (Oryza sativa). Int J Agric Biol 14(2):296–298

    CAS  Google Scholar 

  • Sánchez JA, Rubiano Y (2015) Procesos específicos de formación en Andisoles, Alfisoles y Ultisoles en Colombia. Revista EIA 12(2):85–97. doi:10.14508/reia.2015.11.E2.85-97

    Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity, In: Hakeem KR (Ed) Crop Production and Global Environmental Issues SE – 1. Springer, Cham (ZG), Switzerland, pp. 1–25

  • Sinha S, Saxena R (2006) Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and Bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere 62(8):1340–1350. doi:10.1016/j.chemosphere.2005.07.030

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Wu YH, Liu P, Zheng GH, Zhang JP, Xu GD (2013) Effects of potassium on organic acid metabolism of Fe-sensitive and Fe-resistant rices (Oryza sativa L.). Aust J Crop Sci 7(6):843–848

    CAS  Google Scholar 

  • Xing W, Huang W (2010) Effect of excess iron and copper on physiology of aquatic plant Spirodela polyrrhiza (L.) Schleid. Environ Toxicol 25(2):103–112. doi:10.1002/tox.20480

    CAS  PubMed  Google Scholar 

  • Zang Y, Zheng GH, Lui P, Song JM, Xu GD, Cai MZ (2011) Morphological and physiological responses of root tip cells to Fe2+ toxicity in rice. Acta Physiol Plant 33(3):683–689. doi:10.1007/s11738-010-0590-y

    Article  Google Scholar 

  • Zhang X, Zhang F, Mao D (1999) Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): phosphorus uptake. Plant Soil 209(2):187–192. doi:10.1023/A:1004505431879

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Casierra-Posada.

Ethics declarations

Conflict of interest

F. Casierra-Posada, J.D. Cortés-Bayona and J. Cutler declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casierra-Posada, F., Cortés-Bayona, J.D. & Cutler, J. Effect of Iron Excess on Growth of Sisal Plants (Furcraea hexapetala). Gesunde Pflanzen 69, 123–129 (2017). https://doi.org/10.1007/s10343-017-0396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-017-0396-6

Keywords

Schlüsselwörter

Navigation