Gesunde Pflanzen

, Volume 69, Issue 2, pp 67–72 | Cite as

Effect of Fungicide Application Timing on Sclerotinia Sclerotiorum Infection Rate and Yield in Winter Oilseed Rape

Original Article
  • 166 Downloads

Abstract

In experiments on winter oilseed rape during 2013–2016, we examined the influence of timing of fungicides application at BBCH 61–63 and BBCH 65–67 for fungicides containing active ingredients based upon new triazoles, strobilurins and SDH inhibitors (cyproconazole 80 g/l a.i. + azoxystrobin 200 g/l a.i., picoxystrobin 200 g/l a.i. + cyproconazole 80 g/l a.i., boscalid 200 g/l a.i. + dimoxystrobin 200 g/l a.i., protioconazole 125 g/l a.i. + fluopyram 125 g/l a.i., and prochloraz 276 g/l a.i. + tebuconazole 133 g/l a.i.) on effectiveness against Sclerotinia sclerotiorum and yield. For cyproconazole 80 g/l a.i. + azoxystrobin 200 g/l a.i. and boscalid 200 g/l a.i. + dimoxystrobin 200 g/l a.i., two applications with divided and full doses were also performed. Applications at BBCH 65–67 resulted in a statistically insignificant 4% greater effectiveness against Sclerotinia sclerotiorum. All applications increased yields, but no significant difference was determined due to application timing by growth stages. Divided applications achieved the highest effectiveness, while yield was increased especially at full dosage. In practice, however, such split applications are difficult to perform.

Keywords

Cyproconazole Azoxystrobin Protioconazole Tebuconazole Boscalid Dimoxystrobin Picoxystrobin Fluopyram 

Auswirkungen des Anwendungszeitpunkts von Fungizid auf die Infektionsrate mit Sclerotinia sclerotiorum und auf den Ertrag bei Winterraps

Zusammenfassung

Bei Experimenten mit Winterraps von 2013 bis 2016 haben wir den Einfluss des Zeitpunkts der Fungizidanwendung zu BBCH 61–63 und BBCH 65–68 für Fungizide mit Wirkstoffen untersucht, die auf neuen Triazolen, Strobilurinen und SDH-Hemmern beruhen (Cyproconazol 80 g/l a.i. (active ingredient) + Azoxystrobin 200 g/l a.i., Picoxystrobin 200 g/l a.i. + Cyproconazol 80 g/l a.i., Boscalid 200 g/l a.i. + Dimoxystrobin 200 g/l a.i., Prothioconazol 125 g/l a.i. + Fluopyram 125 g/l a.i. und Prochloraz 276 g/l a.i. + Tebuconazol 133 g/l a.i.), und zwar bezüglich ihrer Wirksamkeit gegen Sclerotinia sclerotiorum sowie bezüglich des Ertrags. Für Cyproconazol 80 g/l a.i. + Azoxystrobin 200 g/l a.i. und Boscalid 200 g/l a.i. + Dimoxystrobin 200 g/l a.i. wurden außerdem zwei Anwendungen mit aufgeteilten und mit vollen Dosen durchgeführt. Die Anwendung zu BBCH 65–67 führte zu einer statistisch insignifikanten um 4 % stärkeren Wirksamkeit gegen Sclerotinia sclerotiorum. Alle Anwendungen erhöhten den Ertrag, aber es wurde kein signifikanter Unterschied nach Anwendungszeitpunkt im Wachstumsverlauf festgestellt. Die aufgeteilte Anwendung brachte die höchste Wirksamkeit, wohingegen der Ertrag insbesondere mit vollen Dosen erhöht wurde. In der Praxis ist die aufgeteilte Anwendung allerdings schwierig umzusetzen.

Schlüsselwörter

Cyproconazole Azoxystrobin Protioconazole Tebuconazole Boscalid Dimoxystrobin Picoxystrobin Fluopyram 

Notes

Acknowledgements

This publication was made possible by institutional support provided for the long-term development of a research organization under Decision of the Ministry of Agriculture of the Czech Republic No. RO1116 from 28 February 2011 and was supported by the Ministry of Agriculture of the Czech Republic, Project No. QJ1310227. The authors would like to thank English Editorial Services, s.r.o. for translation of the manuscript.

Conflict of interest

T. Spitzer, J. Bílovský and J. Kazda declare that they have no competing interests.

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18(2):265–268CrossRefGoogle Scholar
  2. Brazauskiene I, Petraitiene E, Brazauskas G, Ronis A (2013) Susceptibility of winter rape cultivars to fungal diseases and their response to fungicide application. Turk J Agric For 37(6):699–710. doi: 10.3906/tar-1210-26 CrossRefGoogle Scholar
  3. Bečka D, Šimka J, Prokinová E, Cihlář P, Mikšík V, Vašák J, Zukalová H (2011) Possibilities of improvement of winter rapeseed protection (Brassica napus L.) against Sclerotinia (Sclerotinia sclerotiorum). 13th International Rapeseed Congress – Abstract Book, Prague, 5.–9. June 2011.Google Scholar
  4. Bradley CA, Lamey HA, Endres GJ, Henson RA, Hanson BK, McKay KR, Halvorson M, Le Gare DG, Porter PM (2006) Efficacy of fungicides for control of Sclerotinia stem rot of canola. Plant Dis 90(9):1129–1134CrossRefGoogle Scholar
  5. Cowan JE, Boland GJ (2010) Production and carpogenic germination of secondary sclerotia of Sclerotinia sclerotiorum following freezing treatments on primary sclerotia. Can J Plant Pathol 32(3):425–425CrossRefGoogle Scholar
  6. Del Rio LE, Bradley CA, Henson RA, Endres GJ, Hanson BK, McKay KR, Alvorson M, Porter PM, Le Gare DG, Lamey HA (2007) Impact of Sclerotinia stem rot on yield of canola. Plant Dis 91(2):191–194CrossRefGoogle Scholar
  7. Derbyshire MC, Denton-Giles M (2016) The control of sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant Pathol 65(6):859–877. doi: 10.1111/ppa.12517 CrossRefGoogle Scholar
  8. Garg H, Li H, Sivasithamparam K, Kuo J, Barbetti MJ (2010) The infection processes of Sclerotinia sclerotiorum in cotyledon tissue of a resistant and a susceptible genotype of Brassica napus. Ann Bot 106(6):897–908CrossRefPubMedPubMedCentralGoogle Scholar
  9. Koch S, Dunker S, Kleinhenz B, Rohrig M, von Tiedemann A (2007) Crop loss-related forecasting model for Sclerotinia stem rot in winter oilseed rape. Phytopath 97(9):1186–1194CrossRefGoogle Scholar
  10. Meier U (1997) Growth stages of mono- and dicotyledons plants. Blackwell, BerlinGoogle Scholar
  11. OEPP, EPPO (2003) Root, stem, folia and pod diseases of rape. Bull OEPP EPPO 33:25–32CrossRefGoogle Scholar
  12. Parker ML, McDonald MR, Boland GJ (2014) Evaluation of air sampling and detection methods to quantify airborne ascospores of Sclerotinia sclerotiorum. Plant Dis 98(1):32–42. doi: 10.1094/PDIS-02-13-0163-RE CrossRefGoogle Scholar
  13. Spitzer T, Matušinsky P, Klemová Z, Kazda J (2012) Effect of fungicide application date against Sclerotinia sclerotiorum on yield and greening of winter rape. Plant Prot Sci 48(3):105–109Google Scholar
  14. Zhao YR, Yu KQ, Li XL, He Y (2016) Detection of fungus infection on petals of rapeseed (Brassica Napus L.) using NIR hyperspectral imaging. Sci Rep. doi: 10.1038/srep38878 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Agrotest fyto, Ltd.KromerizCzech Republic
  2. 2.Department of Plant Protection, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePragueCzech Republic

Personalised recommendations