Gesunde Pflanzen

, Volume 69, Issue 2, pp 83–90 | Cite as

Growth, Fiber and Nitrogen Content in Sisal Plants (Furcraea sp) Under NaCl Salinity

  • F. Casierra-Posada
  • A. Carreño-Patiño
  • J. Cutler
Original Article

Abstract

Soil contains water and nutrients necessary for the development of cultivated plants and serves as a substrate and support in terrestrial ecosystems. For reasons inherent to the nature of soil, salt content can considerably limit the growth of plants. With the implementation of salinity-tolerant crops, saline soils can be transformed into productive and sustainable areas. In Tunja, Colombia, a trial was developed to quantify the changes in growth, water intake, fiber, nitrogen and chlorophyll content in Furcraea hexapetala plants exposed to NaCl saline conditions. Plantlets obtained from bulbs were grown in an aerated nutrient solution under greenhouse conditions. Measurements of 30, 60 or 90 mmol NaCl was added to the nutrient solution and control plants were left without addition of salt. As a consequence of salinity, leaf area, leaf area ratio, water uptake, absolute growth rate, relative growth rate, fiber content, dry matter, chlorophyll and nitrogen content in leaves were reduced. The accumulation of dry matter in leaves, stem and roots was especially affected when the plants were exposed to 90 mmol of NaCl. Accumulated dry matter increased in the stems, but reduced in the leaves. These results suggest that plants of Furcraea hexapetala can tolerate up to 60 mmol of NaCl (4.9 dS m−1) without substantially affecting the parameters that determine the growth or the fiber content in the leaves.

Keywords

Osmotic stress Leaf area Water uptake Biomass Chlorophyll 

Wachstum, Faser- und Stickstoffgehalt in Sisalpflanzen (Furcraea sp) unter NaCl-Salinität

Zusammenfassung

Der Boden enthält Wasser und Nährstoffe, die für die Entwicklung von Kulturpflanzen notwendig sind und dient als Substrat und Unterstützung in terrestrischen Ökosystemen. Wegen der natürlichen Zusammensetzung des Bodens kann der Salzgehalt das Pflanzenwachstum erheblich einschränken. Mit der Umsetzung von salztoleranten Kulturen können salzhaltige Böden in produktive und nachhaltige Bereiche verwandelt werden. In Tunja, Kolumbien, wurde eine Studie entwickelt, um die Veränderungen des Wachstums, der Wasseraufnahme, des Faser-, Stickstoff- und Chlorophyllgehaltes in Furcraea hexapetala-Pflanzen, die NaCl-Salzbedingungen ausgesetzt waren, zu quantifizieren. Aus Bulbillen wurden Pflänzchen gezogen und in einer belüfteten Nährlösung unter Gewächshausbedingungen gezüchtet. Zusätzlich zu den Messungen von 30, 60 oder 90 mmol NaCl, was in der Nährlösung zugesetzt wurde, wurden Kontrollpflanzen ohne Zusatz von Salz analysiert. Wegen des Salzgehalts wurden Blattfläche, Blattflächenverhältnis, Wasseraufnahme, absolute Wachstumsrate, relative Wachstumsrate, Fasergehalt, Trockenmasse, Chlorophyll und Stickstoffgehalt in Blättern der Pflanzen reduziert. Die akkumulierte Anhäufung von Trockenmasse in Blättern, Stamm und Wurzeln war besonders betroffen, wenn die Pflanzen 90 mmol NaCl ausgesetzt wurden. Die akkumulierte Trockenmasse nahm in den Stielen zu, wurde aber in den Blättern reduziert. Diese Ergebnisse deuten darauf hin, dass Pflanzen von Furcraea hexapetala bis zu 60 mmol NaCl (4,9 dS−1) tolerieren können, ohne die Parameter, die das Wachstum oder den Fasergehalt in den Blättern bestimmen, wesentlich zu beeinflussen.

Schlüsselwörter

Osmotischer Stress Blattfläche Wasseraufnahme Biomasse Chlorophyll 

Notes

Conflict of interest

F. Casierra-Posada, A. Carreño-Patiño and J. Cutler declare that they have no competing interests.

References

  1. Abdul Khalil HPS, Sohrab Hossain MD, Rosamah E, Azli NA, Saddon N, Davoudpoura Y, Nazrul Islam M, Dungani R (2015) The role of soil properties and its interaction towards quality plant fiber: A review. Renew Sustain Energy Rev 43:1006–1015. doi: 10.1016/j.rser.2014.11.099 CrossRefGoogle Scholar
  2. Álvarez S, Sánchez-Blanco MJ (2014) Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus. Plant Biol 16(4):757–764. doi: 10.1111/plb.12106 CrossRefPubMedGoogle Scholar
  3. AOAC (2012) Official methods of analysis 962.09: Crude fiber analysis, 19th edn. In: Latimer GW Jr, Official Methods of Analysis of AOAC International. AOAC International, Gaithersburg (USA)Google Scholar
  4. Benjamin RW, Oren E, Katz E, Becker K (1992) The apparent digestibility of Atriplex barclayana and its effect on nitrogen balance in sheep. Anim Prod 54:259–264CrossRefGoogle Scholar
  5. Bergsten SJ, Koeser AK, Stewart JR (2016) Evaluation of the impacts of salinity on biomass and nutrient levels of Agave species with agricultural potential in semiarid regions. Hort Sci 51:1–6Google Scholar
  6. Blanco FF, Folegatti MV, Gheyi HR, Fernandes PD (2007) Emergence and growth of corn and soybean under saline stress. Sci Agric 64(5):451–459. doi: 10.1590/S0103-90162007000500001 CrossRefGoogle Scholar
  7. Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with Crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60(10):2879–2896CrossRefPubMedGoogle Scholar
  8. Casierra-Posada F, Gómez NE (2008) Crecimiento foliar y radical en plantas de fique (Furcraea castilla y F. macrophylla) bajo estrés por encharcamiento. Agron Colombiana 26(3):381–388Google Scholar
  9. Casierra-Posada F, González DM (2009) Cambio circadiano de pH y acidez titulable en la savia de fique (Furcraea castilla y F. macrophylla). Orinoquia 13(1):5–13Google Scholar
  10. Casierra-Posada F, Pérez WA, Portilla F (2006) Relaciones hídricas y distribución de materia seca en especies de fique (Furcraea sp. Vent.) cultivadas bajo estrés por NaCl. Agron Colombiana 24(2):280–289Google Scholar
  11. Casierra-Posada F, Rodríguez CA, Fischer G (2009) Reducing negative effects of salinity in tomato (Solanum lycopersicum L.) plants by adding Leonardite to soil. Acta Hort 821:133–140CrossRefGoogle Scholar
  12. Çulha Ş, Çakırlar H (2011) Effect of salt stress induced by NaCl on safflower (Carthamus tinctorius L.) cultivars at early seedling stages. Hacet J Biol Chem 39:61–64Google Scholar
  13. Escamilla-Treviño LL (2012) Potential of plants from the genus Agave as bioenergy crops. Bioenergy Res 5(1):1–9CrossRefGoogle Scholar
  14. Engels C, Kirkby EA (2001) Cycling of nitrogen and potassium between shoot and roots in maize as affected by shoot and root growth. J Plant Nutr Soil Sci 164:183–191CrossRefGoogle Scholar
  15. Gong B, Wen D, Vanden Langenberg K, Wei M, Yang F, Shi Q, Wang X (2013) Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters nutrient metabolism and the antioxidant system in tomato leaves. Sci Hortic 157:1–12CrossRefGoogle Scholar
  16. Haider MS, Barnes JD, Cushman JC, Borland AM (2012) A CAM- and starch-deficient mutant of the facultative CAM species Mesembryanthemum crystallinum reconciles sink demands by repartitioning carbon during acclimation to salinity. J Exp Bot 63(5):1985–1996. doi: 10.1093/jxb/err412 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hunt R (1990) Basic growth analysis. Plant growth analysis for beginners. Unwin Hyman, Boston, MA., p 112CrossRefGoogle Scholar
  18. Jaleel CA, Sankar B, Sridharan R, Panneerselvam R (2008) Soil salinity alters growth, chlorophyll contents and secondary metabolite accumulation in Catharanthus roseus. Turk J Biol 32:79–83Google Scholar
  19. Kausar A, Ashraf MY, Niaz M (2014) Some physiological and genetic determinants of salt tolerance in sorghum (Sorghum bicolor (L.) Moench): Biomass production and nitrogen metabolism. Pak J Bot 46(2):515–519Google Scholar
  20. Kiremit MS, Arslan H (2016) Effects of irrigation water salinity on drainage water salinity, evapotranspiration and other leek (Allium porrum L.) plant parameters. Scien Hortic 201:211–217. doi: 10.1016/j.scienta.2016.02.001 CrossRefGoogle Scholar
  21. Lal R (2004) Carbon sequestration in dryland ecosystems. Environ Manag 33(4):528–544CrossRefGoogle Scholar
  22. Lüttge U (1993) The role of crassulacean acid metabolism (CAM) in the adaptation of plants to salinity. New Phytol 125:59–71CrossRefGoogle Scholar
  23. Lüttge U (2004) Ecophysiology of Crassulacean Acid Metabolism (CAM). Ann Bot 93(6):629–652. doi: 10.1093/aob/mch087 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Masters DG, Benes SE, Norman HC (2007) Biosaline agriculture for forage and livestock production. Agric Ecosyst Environ 119:234–248CrossRefGoogle Scholar
  25. Memon JA (1999) Interaction between salinity and nutrients in cotton. University of Wales, Bangor, U.K (Ph.D. dissertation)Google Scholar
  26. Murillo-Amador B, Nieto-Garibay A, Troyo-Diéguez E, García-Hernández JL, Hernández-Montiel L, Valdez-Cepeda RD (2015) Moderate salt stress on the physiological and morphometric traits of Aloe vera L. Bot Sci 93(3):639–648. doi: 10.17129/botsci.73 CrossRefGoogle Scholar
  27. Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11. doi: 10.1093/aob/mcw191 CrossRefPubMedGoogle Scholar
  28. Pirasteh-Anosheh H, Ranjbar G, Emam Y, Ashraf M (2014) Salicylic-acid-induced recovery ability in salt-stressed Hordeum vulgare plants. Turk J Bot 38:112–121. doi: 10.3906/bot-1302-20 CrossRefGoogle Scholar
  29. Pirasteh-Anosheh H, Ranjbar G, Pakniyat H, Emam Y (2016) Physiological mechanisms of salt stress tolerance in plants: An overview. In: Azooz MM, Ahmad P (eds) Plant-environment interaction: Responses and approaches to mitigate stress, pp 141–160Google Scholar
  30. Shiyab SM, Shatnawi MA, Shibli RA, Al Smeirat NG, Ayad J, Akash MW (2013) Growth, nutrient acquisition, and physiological responses of hydroponic grown tomato to sodium chloride salt induced stress. J Plant Nutr 36(4):665–676. doi: 10.1080/01904167.2012.754037 CrossRefGoogle Scholar
  31. Silveira JAG, Viégas RA, Rocha IMA, Moreira ACOM, Moreira RA, Oliveira JTA (2003) Proline accumulation and glutamine synthetase activity are increased by salt induced proteolysis in cashew leaves. J Plant Physiol Cordoba 160(2):115–123CrossRefGoogle Scholar
  32. Stewart JR (2015) Agave as a model CAM crop system for a warming and drying world. Front Plant Sci 6:684. doi: 10.3389/fpls.2015.00684 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ullrich WR (2002) Salinity and nitrogen nutrition. In: Läuchli A, Lüttge U (eds) Salinity: Environment – Plants – Molecules. Kluwer Academic Publishers, Netherlands, pp 229–248Google Scholar
  34. Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: A review. J Environ Biol 32(5):667–685PubMedGoogle Scholar
  35. Yildiz M (2007) Two-dimensional electrophoretic analysis of soluble leaf proteins of a salt-sensitive (Triticum aestivum) and a salt-tolerant (Triticum durum) cultivar in response to NaCl stress. J Integ Plant Biol 49:975–981CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • F. Casierra-Posada
    • 1
  • A. Carreño-Patiño
    • 1
  • J. Cutler
    • 2
  1. 1.Faculty of Agricultural Sciences, Research Group in Plant EcophysiologyPedagogical and Technological University of Colombia (UPTC)TunjaColombia
  2. 2.Humboldt Universtät zu BerlinBerlinGermany

Personalised recommendations