Skip to main content
Log in

Attenuation of Negative Effects of Saline Stress in two Lettuce Cultivars by Salicylic Acid and Glycine Betaine

Abschwächung der negativen Auswirkungen von Salzstress bei 2 Kopfsalatkultursorten durch Salicylsäure und Glycinbetain

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Reducing destructive effects of lettuce plants irrigated with saline water was investigated in two field experiments conducted at Ismailia Governorate in 2012–2013 and 2013–2014. Two lettuce (Lactuca sativa L.) cultivars, Great Lakes and Balady, irrigated with saline water (3.22 dS/m) were treated using two levels of salicylic acid (SA) and glycine betaine (GB) as a foliar application (200, 400 ppm and 15, 30 Mm, respectively). Generally, application of SA and GB enhanced growth parameters, i. e. plant height; root length; number of leaves per plant; plant fresh and dry weight; leaf relative water content (LRWC); membrane permeability (MP); lipid peroxidation (MDA); chlorophyll a, b and carotenoid content in leaf; proline; total soluble sugars (TSS); superoxide dismutase (SOD) and peroxidase (POD) activity; and Na, K, Ca content. GB treatments significantly increased most recorded growth parameters, especially at 30 mM, while this treatment decreased values of MP, (MDA) and Na content in two lettuce cultivars.

Zusammenfassung

Die Minderung der destruktiven Wirkung der Bewässerung von Kopfsalatpflanzen mit salzhaltigem Wasser wurde in 2 Feldversuchen 2012–2013 und 2013–2014 im ägyptischen Gouvernement al-Isma’iliyya (Ismailia) untersucht. Die 2 Kopfsalatkultursorten (Lactuca sativa L.) Great Lakes und Balady wurden mit salzhaltigem Wasser (3,22 dS/m) gegossen und die Blätter mit 2 Dosierungen Salicylsäure (SA) und Glycinbetain (GB) behandelt (200 und 400 ppm bzw. 15 und 30 Mm). Allgemein steigerte die Anwendung von SA und GB die Wachstumsparameter, d. h. Pflanzenhöhe, Wurzellänge, Anzahl der Blätter pro Pflanze, Frisch- und Trockengewicht der Pflanze, Wassergehalt im Verhältnis zum gesamten Blatt („leaf relative water content“, LRWC), Membranpermeabilität (MP), Lipidperoxidation (MDA), Chlorophyll a und b, Karotinoidgehalt der Blätter, Prolin, Gesamtgehalt löslicher Zucker („total soluble sugars“, TSS), Aktivität von Superoxiddismutase (SOD) und Peroxidase (POD) sowie Gehalt an Na, K und Ca. GB-Behandlungen steigerten die meisten beobachteten Wachstumsparameter signifikant, insbesondere bei 30 mM, senkten aber die MP, die MDA und den Na-Gehalt in 2 Kopfsalatsorten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A.O.A.C. (2007) Official Methods of Analysis, 18th edn. Association of Official Agricultural Chemists, Washington

    Google Scholar 

  • Abbas W, Ashrafa M, Akrama NA (2010) Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugarbeet extracts. Sci Horticul 125:188–195

    Article  CAS  Google Scholar 

  • Arfan M, Habib RA, Muhammad A (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164(6):685–694

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379. doi:10.1016/j.tplants.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 23(3):350–356

    Article  Google Scholar 

  • Ekinci M, Yıldırım E, Dursun A, Turan M (2012) Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. HortScience 47:631–636

    CAS  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Reg 45:215–224

    Article  CAS  Google Scholar 

  • Essa TA (2002) Effect of salinity stress on growth and nutrient composition of three soybeans (Glycine max L. Merrill) cultivars. J Agro Crop Sci 188:86–93

    Article  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Gadallah MAA (1999) Effects of proline and glycine betaine on Vicia faba responses to salt stress. Biol Plant 42:249–257

    Article  CAS  Google Scholar 

  • Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Beh 6:1746–1751

    Article  CAS  Google Scholar 

  • Gonzalez L, Gonzalez-Vilar M (2001) Determination of relative water content. In: Reigosa RMJ (ed) Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, London, pp 207–212

    Google Scholar 

  • Grattan SR, Grieve CM (1998) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Cicek N, Guneri E, Eraslan F (2005) Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (L.) Archives of Agronomy and Soil Science 51(6):687–695

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164(6):728–736

    Article  CAS  PubMed  Google Scholar 

  • Habib N, Ashraf M, Ali Q, Perveen R (2012) Response of salt stressed okra (Abelmoschus esculentus Moench) plants to foliar-applied glycine betaine and glycine betaine containing sugar beet extract. South African Journal of Botany 83:151–158

  • Hammerschmidt R, Nuckles E, Kue J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotricum lagenarium. Physiol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 164:553–561

    Article  CAS  PubMed  Google Scholar 

  • Hu LX, Hu T, Zhang XZ, Pang HC, Fu JM (2012) Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. J Am Soc Hortic Sci 137:38–46

    CAS  Google Scholar 

  • Kaya C, Higgs D, Ince F, Amador BM, Cakir A, Sakar E (2003) Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. J Plant Nutr 26:807–820

    Article  CAS  Google Scholar 

  • Leyva R, Sánchez-Rodríguez E, Ríos JJ, Rubio-Wilhelmi MM, Romero L, Ruiz JM, Blasco B (2011) Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci 181:195–202

    Article  CAS  PubMed  Google Scholar 

  • Mäkela P, Mantila J, Hinkkanen R, Pehu E, Peltnen-Sainio P (1996) Effect of foliar applications of glycine betaine on stress tolerance, growth and yield of spring cereals and summer turnip rape in Finland. J Agron Crop Sci 176:223–234

    Article  Google Scholar 

  • Mäkela P, Jokinen K, Kontturi M, Peltnen-Sainio P, Pehu E, Somersalo S (1998) Foliar application of glycine betaine – a novel product from sugar beet – as an approach to increase tomato yield. Ind Crops Prod 7:139–148

    Article  Google Scholar 

  • Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531(2):157–161

    Article  PubMed  Google Scholar 

  • Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177:181–189

    Article  CAS  Google Scholar 

  • Moran R (1982) Formulae for determination of chlorophyllous pigments extracted with N,N-Dimethylformamide. Plant Physiol 69:1376–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz K, Ashraf M (2010) Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop Sci 196:28–37

    Article  CAS  Google Scholar 

  • Nicolle C, Cardinault N, Gueux E, Jaffrelo L, Rock E, Mazur A (2004) Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin Nutr 23:605–614

    Article  CAS  PubMed  Google Scholar 

  • Pérez-López U, Miranda-Apodaca J, Muñoz-Rueda A, Mena-Petite A (2013) Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. J Plant Physiol 170:1517–1525

    Article  CAS  PubMed  Google Scholar 

  • Petters W, Piepenbrock M, Lenz B, Schmitt JM (1997) Cytokinin as a negative effector of phosphoenolpyrovate carboxilase induction in Mesembryanthemum crystallinum. J Plant Physiol 151:362–367

    Article  Google Scholar 

  • Qadir M, Noble AD, Schubert S, Thomas RJ, Arslan A (2006) Sodicity-induced land degradation and its sustainable management: problems and prospectives. Land Degrad Dev 17:661–676

    Article  Google Scholar 

  • Rahman MS, Miyake H, Takeoka Y (2002) Effects of exogenous glycine betaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod Sci 5:33–44

    Article  CAS  Google Scholar 

  • Raza SH, Athar HUR, Ashraf M (2006) Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. Pakistan J Bot 38:241–251

    Google Scholar 

  • Sayyari M, Ghavami M, Ghanbari F, Kordi S (2013) Assessment of salicylic acid impacts on growth rate and some physiological parameters of lettuce plants under drought stress conditions. Intern J Agricul Crop Sci Vol 5(17):1951–1957

    Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Serafini M, Bugianesi R, Salucci M, Azzini E, Raguzzini A, Maiani G (2002) Effect of acute ingestion of fresh and stored lettuce (Lactuca sativa) on plasma total antioxidant capacity and antioxidant levels in human subjects. Br J Nutr 88:615–623

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    Article  CAS  Google Scholar 

  • Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. ‘Roma’): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul 49:77–83

    CAS  Google Scholar 

  • Szalai G, Paldi E, Janda T (2005) Effect of salt stress on the endogenous salicylic acid content in maize (Zea mays L.) plants. Acta Biol Szeged 49:47–48

    Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259(5094):508–510

    Article  CAS  PubMed  Google Scholar 

  • Tariq A, Masroor M, Khan A, Jaime A, Teixeira DS, Mohd I, Naeem M (2011) Role of salicylic acid in promoting salt stress tolerance and enhanced Artemisinin production in Artemisia annua L. J Plant Growth Regul 30:425–435

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trol W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660

    Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539

    Article  CAS  PubMed  Google Scholar 

  • Wang GP, Zhang XY, Li F, Luo Y, Wang W (2010) Overaccumulation of glycinebetaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48(1):117–126

    Article  CAS  Google Scholar 

  • Xu CX, Liu YL, Zheng QS, Liu ZP (2006) Silicate improves growth and ion absorption and distribution in Aloe vera under salt stress. J Plant Physiol Mol Biol 32:73–78

    CAS  Google Scholar 

  • Yildirim E, Turan M, Guvenc I (2008) Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J Plant Nutr 31:593–612

    Article  CAS  Google Scholar 

  • Yildirim E, Turan M, Ekinci M, Dursun A, Cakmakci R (2011) Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Sci Res Essays 6:4389–4396

    Article  Google Scholar 

  • Yildirim E, Ekincia M, Turanb M, Dursuna A, Kula R, Parlakovaa F (2015) Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Arch Agron Soil Sci. doi:10.1080/03650340.2015.1030611

    Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amorós A, Botella MA (2003) Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L in response to salt stress during germination. Plant Sci 164:557–563

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira M. Hegazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifa, G.S., Abdelrassoul, M., Hegazi, A.M. et al. Attenuation of Negative Effects of Saline Stress in two Lettuce Cultivars by Salicylic Acid and Glycine Betaine. Gesunde Pflanzen 68, 177–189 (2016). https://doi.org/10.1007/s10343-016-0376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-016-0376-2

Keywords

Schlüsselwörter

Navigation