Gesunde Pflanzen

, Volume 67, Issue 4, pp 191–199 | Cite as

Hypochlorite Application for Controlling Algae Biofilm Formation, Microorganisms and Tomato Production in Recirculating Systems

  • Dennis Dannehl
  • Ingo Schuch
  • Yuan Gao
  • Sarah Cordiner
  • Uwe Schmidt
Original Article

Abstract

Physical and chemical disinfection methods are used or are under investigation in greenhouse facilities to minimize the occurrence of pathogens and the application of pesticides in recirculating systems. Since the most of these methods differ in their effectiveness, more investigation is needed to produce healthy plants in a sustainable way. Therefore, the present study is focused on the identification of interactions between hypochlorite (ClO) used as a disinfectant for a recirculating system and algae formation, spread of microorganisms, as well as plant development. As such, on-site produced potassium hypochlorite (1 % KClO) solution were supplemented using proportional injection control once a week for 90 min, as a disinfectant, into a recirculating tomato production system (NFT) until a free chlorine concentration of 1 mg L−1 (D I) and 2 mg L−1 (D II) were reached, respectively.

The formation of the algae biofilm was reduced by 15 % (D I) and 48 % (D II). These treatments also suppressed cultivated microorganisms up to 100 %. Tomato plants exposed to the treatment D I showed a comparable plant height to the control plants after 7 weeks, whereas D II led to a significant increase in plant height of 12 cm. However, the formation of leaves was more pronounced by treatment D I. After a growing period of 7 weeks, a significant difference in leaf number up to 2.9 leaves per plant was calculated compared to the other treatments. The same treatment had the largest positively impact on the fruit yield and number of fruit, which were increased by 10 and 15 %, respectively, compared to the control plants.

Under consideration of all results, the most promising effects of ClO as a disinfectant for hydroponic systems were achieved with a free chlorine concentration of 1 mg L−1 (D I), where phytotoxic effects can be excluded.

Keywords

Potassium hypochlorite Disinfectant Hydroponic systems Algae Microorganisms Plant development Tomato yield 

Applizierung von Hypochlorit zur Kontrolle der Algenbiofilmbildung, Mikroorganismen und Tomatenproduktion in rezirkulierenden Systemen

Zusammenfassung

Physikalische und chemische Desinfektionsmethoden werden in Gewächshausanlagen benutzt oder derzeit untersucht, um das Auftreten von Pathogenen und den Einsatz von Pestiziden in re-zirkulierenden Systemen zu minimieren. Da die meisten dieser Methoden sich in ihrer Effektivität unterscheiden, sind mehr Untersuchungen nötig, um gesunde Pflanzen nachhaltig zu produzieren. Deswegen ist die vorliegende Studie auf die Identifizierung von Interaktionen zwischen Hypochlorit (ClO), welches als Desinfektionsmittel für ein re-zirkulierendes System genutzt wurde, und der Algenbildung, der Ausbreitung von Mikroorganismen sowie der Pflanzenentwicklung fokussiert. In diesem Zusammenhang wurde Kaliumhypochloritlösung (1 % KClO) vor Ort produziert und mittels geregelter Proportionalinjektion einmal pro Woche für 90 Min als Desinfektionsmittel in ein re-zirkulierendes Tomatenproduktionssystem (NFT) appliziert, bis eine freie Chlorkonzentration von 1 mg L−1 (D I) und 2 mg L−1 (D II) entsprechend erreicht wurde.

Die Bildung des Algenbiofilms wurde um 15 % (D I) und 48 % (D II) reduziert. Diese Behandlungen unterdrückten ebenfalls die kultivierten Mikroorganismen bis zu 100 %. Tomatenpflanzen, die der Behandlung D I ausgesetzt wurden, zeigten nach sieben Wochen vergleichbare Pflanzenhöhen wie die Kontrollpflanzen, wohingegen D II zu einem signifikanten Anstieg der Pflanzenhöhe um 12 cm führte. Dagegen war die Blattausbildung durch die Behandlung D I mehr ausgeprägt. Nach einer Wachstumsphase von sieben Wochen wurde im Vergleich zu den anderen Varianten eine signifikante Differenz von bis zu 2,9 Blättern pro Pflanze kalkuliert. Dieselbe Behandlung hatte ebenfalls den größten positiven Effekt auf den Fruchtertrag und die Fruchtanzahl, welche entsprechend um 10 und 15 % gegenüber den Kontrollpflanzen erhöht waren.

Unter Berücksichtigung aller Ergebnisse ist festzuhalten, dass die vielversprechendsten Effekte von ClO als Desinfektionsmittel für hydroponische Systeme durch eine freie Chlorkonzentration von 1 mg L−1 (D I) erzielt wurden, wobei phytotoxische Effekte ausgeschlossen werden können.

Schlüsselwörter

Kaliumhypochlorit Desinfektionsmittel Hydroponische Systeme Algen Mikroorganismen Pflanzenentwicklung Tomatenertrag 

References

  1. Amirjani MR (2010) Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am J Plant Physiol 5:350–360CrossRefGoogle Scholar
  2. Armitage P (1993) Chemical control of Phytophthora cinnamomi in irrigation water. Aust Hortic 91:30–36Google Scholar
  3. Bull RJ, Gerba C, Trussell RR (1990) Evaluation of the health risks associated with disinfection. Crit Rev Environ Control 20:77–113CrossRefGoogle Scholar
  4. Carmassi G, Incrocci L, Maggini R, Malorgio F, Tognoni F, Pardossi A (2005) Modeling salinity build-up in recirculating nutrient solution culture. J Plant Nutr 28:431–445CrossRefGoogle Scholar
  5. Carruthers S (1997) An introduction to ozone generation. Pract Hydroponics Green 9:24–31Google Scholar
  6. Cayanan DF, Zheng Y, Zhang P, Graham G, Dixon M (2008) Sensitivity of five container-grown nursery species to chlorine in overhead irrigation water. Hortscience 43:1882–1887Google Scholar
  7. Cayanan DF, Zhang P, Liu W, Dixon M, Zheng Y (2009) Efficacy of chlorine in controlling five common plant pathogens. Hortscience 44:157–163Google Scholar
  8. Clark GA, Smajstrla AG (1992) Treating irrigation systems with chlorine. Foliage Dig 15:3–5Google Scholar
  9. Dannehl D, Josuttis M, Huyskens-Keil S, Ulrichs C, Schmidt U (2014) Comparison of different greenhouse systems and their impacts on plant responses of tomatoes. Gesunde Pflanz 66:111–119CrossRefGoogle Scholar
  10. Delaquis PJ, Stewart S, Toivonen PMA, Moyls AL (1999) Effect of warm, chlorinated water on the microbial flora of shredded iceberg lettuce. Food Res Int 32:7–14CrossRefGoogle Scholar
  11. DIN-EN-ISO-6222 (1999) Water quality–enumeration of cultivable microorganisms. Colony count by inoculation in a nutrient agar culture (ISO 6222:1999). Beuth-Verlag GmbH, BerlinGoogle Scholar
  12. Duru NK, Morshedi M, Oehninger S (2000) Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril 74:1200–1207CrossRefGoogle Scholar
  13. Esna-Ashari M, Gholami M (2010) The effect of increased chloride (Cl -) content in nutrient solution on yield and quality of strawberry (Fragaria ananassa Duch.) fruits. J Fruit Ornam Plant Res 18:37–44Google Scholar
  14. Fuhrer J, Skärby L, Ashmor MR (1997) Critical levels for ozone effects on vegetation in Europe. Environ Pollut 97:91–106CrossRefPubMedGoogle Scholar
  15. Göhler F, Molitor HD (2002) Erdelose Kulturverfahren im Gartenbau. Eugen Ulmer GmbH & Co., StuttgartGoogle Scholar
  16. Goodburn C, Wallace CA (2013) The microbiological efficacy of decontamination methodologies for fresh produce: a review. Food Control 32:418–427CrossRefGoogle Scholar
  17. Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  18. Guzel-Seydim ZB, Greene AK, Seydim AC (2004) Use of ozone in the food industry. LWT-Food Sci Technol 37:453–460CrossRefGoogle Scholar
  19. Heuvelink E, Bakker MJ, Elings A, Kaarsemaker R, Marcelis LFM (2005) Effect of leaf area on tomato yield. Acta Hortic 691:43–50CrossRefGoogle Scholar
  20. Hong CX, Moorman GW (2005) Plant pathogens in irrigation water: challenges and opportunities. Crit Rev Plant Sci 24:189–208CrossRefGoogle Scholar
  21. Igura N, Fujii M, Shimoda M, Hayakawa I (2004) Research note: inactivation efficiency of ozonated water for Fusarium oxysporum conidia under hydroponic greenhouse conditions. Ozone Sci Eng 26:517–521CrossRefGoogle Scholar
  22. Kavroulakis N, Ehaliotis C, Ntougias S, Zervakis GI, Papadopoulou KK (2005) Local and systemic resistance against fungal pathogens of tomato plants elicited by a compost derived from agricultural residues. Physiol Mol Plant Pathol 66:163–174CrossRefGoogle Scholar
  23. Krczal G, Albouy J, Damy I, Kusiak C, Deogratias JM, Moreau JP, Berkelmann B, Wohanka W (1995) Transmission of pelargonium flower break virus (PFBV) in irrigation systems and by thrips. Plant Dis 79:163–166CrossRefGoogle Scholar
  24. Li X, Hu HY, Gan K, Sun YX (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500CrossRefGoogle Scholar
  25. Lopez MV, Satti SME (1996) Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Sci 114:19–27CrossRefGoogle Scholar
  26. Martinez F, Castillo S, Carmona E, Aviles M (2010) Dissemination of Phytophthora cactorum, cause of crown rot in strawberry, in open and closed soilless growing systems and the potential for control using slow sand filtration. Sci Hortic 125:756–760CrossRefGoogle Scholar
  27. Mebalds M, van der Linden A, Bankier M, Beardsell D (1996) Using ultraviolet radiation and chlorine dioxide to control fungal plant pathogens in water. Nurs Pap 5:1–2Google Scholar
  28. Miché L, Balandreau J (2001) Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Appl Environ Microbiol 67:3046–3052CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mozafariyan M, Saghafi K, Bayat AE, Bakhtiari S (2013) The effects of different sodium chloride concentrations on the growth and photosynthesis parameters of tomato (Lycopersicum esculentum cv. Foria). Intl J Agric Crop Sci 6:203–207Google Scholar
  30. Park KW, Lee GP, Kim MS, Lee SJ, Seo MW (1998) Control of several fungi in the recirculating hydroponic system by modified slow sand filtration. Korean J Hortic Sci Technol 16:347–349Google Scholar
  31. Pettitt TR, (2003) Fertigation: developments in pathogen removal from recycled water, Dahlia greidinger symposium. International Fertiliser Society, IzmirGoogle Scholar
  32. Poncet C, Offroy M, Antonini C, Bettachini A, Bonnet G, Drapier JM, Hericher D, Julien P (2001) Disinfection systems of recycled effluents in flower crops. Acta Hortic 554:349–354CrossRefGoogle Scholar
  33. Ramos B, Miller FA, Brandão TRS, Teixeira P, Silva CLM (2013) Fresh fruits and vegetables-an overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg Technol 20:1–15CrossRefGoogle Scholar
  34. Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160:265–272CrossRefPubMedGoogle Scholar
  35. Rosner A, Lachman O, Pearlsman M, Feigelson L, Maslenin L, Antignus Y (2006) Characterisation of cucumber leaf spot virus isolated from recycled irrigation water of soil-less cucumber cultures. Ann Appl Biol 149:313–316CrossRefGoogle Scholar
  36. Runia WT (1994) Disinfection of recirculation water from closed cultivation systems with ozone. Acta Hortic 361:388–396CrossRefGoogle Scholar
  37. Runia WT (1995) A review of possibilities for disinfection of recirculation water from soilless culture. Acta Hortic 382:221–229CrossRefGoogle Scholar
  38. Schäfer AI, Fane AG, Wait TD (2001) Cost factors and chemical pretreatment effects in the membrane filtration of waters containing natural organic matter. Water Res 35:1509–1517CrossRefPubMedGoogle Scholar
  39. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinãs BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRefPubMedGoogle Scholar
  40. Stewart-Wade SM (2011) Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrig Sci 29:267–297CrossRefGoogle Scholar
  41. Summerfelt ST (2003) Ozonation and UV irradiation-an introduction and examples of current applications. Aquac Eng 28:21–36CrossRefGoogle Scholar
  42. Tu JC, Harwood B (2005) Disinfestation of recirculating nutrient solution by filtration as a means to control Pythium root rot of tomatoes. Acta Hortic 695:303–307CrossRefGoogle Scholar
  43. UNFPA (2011) State of world population 2011. People and possibilities in a world of 7 billion. Information and External Relations Division of the United Nations Population Fund, New YorkGoogle Scholar
  44. Uysal N, Schapira RM (2003) Effects of ozone on lung function and lung diseases. Curr Opin Pulm Med 9:144–150CrossRefPubMedGoogle Scholar
  45. van Os EA (1999) Closed soilless growing systems: a sustainable solution for Dutch greenhouse horticulture. Water Sci Technol 39:105–112Google Scholar
  46. van Os EA (2010) Disease management in soilless culture systems. Acta Hortic 883:385–394Google Scholar
  47. van Os EA, Alsanius B (2004) Workshop: disinfestation of recirculated nutrient solution-towards new approaches? Acta Hortic 644:605–607Google Scholar
  48. Wohanka W (1995) Disinfection of recirculating nutrient solutions by slow sand filtration. Acta Hortic 382:246–255CrossRefGoogle Scholar
  49. Wohanka W, Luedtke H, Ahlers H, Luebke M (1999) Optimization of slow filtration as a means for disinfecting nutrient solutions. Acta Hortic 481:539–544CrossRefGoogle Scholar
  50. Yamamoto H, Terada T, Naganawa T, Tatsuyama K (1990) Disinfectant effect of ozonation on water infested with several root infecting pathogens. Jpn J Phytopathol 56:250–251CrossRefGoogle Scholar
  51. Yiasoumi W (2005) Water disinfecting techniques for plant pathogen control. Comb Proc Int Plant Propag Soc 55:138–141Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dennis Dannehl
    • 1
  • Ingo Schuch
    • 1
  • Yuan Gao
    • 2
  • Sarah Cordiner
    • 3
  • Uwe Schmidt
    • 1
  1. 1.Faculty of Life Sciences, Albrecht Daniel Thaer – Institute of Agricultural and Horticultural Sciences, Division Biosystems EngineeringHumboldt-Universität zu BerlinBerlinGermany
  2. 2.newtec Umwelttechnik GmbHBerlinGermany
  3. 3.The New Zealand Institute for Plant and Food Research Ltd.Palmerston NorthNew Zealand

Personalised recommendations