RETRACTED ARTICLE: Botanical Pesticides and Their Mode of Action

RETRACTED ARTICLE: Botanische Pestizide und ihre Wirkmechanismen

An Erratum to this article was published

Abstract

Pest management is facing economic and ecological challenge worldwide due to human and environmental hazards caused by majority of the synthetic pesticide chemicals. Identification of novel effective insecticidal compounds is essential to combat increasing resistance rates. Botanical pesticides have long been touted as attractive alternatives to synthetic chemical pesticides for pest management because botanicals reputedly pose little threat to the environment or to human health. The body of scientific literature documenting bioactivity of plant derivatives to arthropod pests continues to expand, yet only a handful of botanicals are currently used in agriculture in the industrialized world, and there are few prospects for commercial development of new botanical products. Pyrethrum and neem are well established commercially, pesticides based on plant essential oils have entered the marketplace, and the use of rotenone appears to be waning. A number of plant substances have been considered for use as pest antifeedants, repellents and toxicants, but apart from some natural mosquito repellents, a little commercial success has ensued for plant substances that modify arthropod behavior. Several factors appear to limit the success of botanicals, most notably regulatory barriers and the availability of competing products (newer synthetics and fermentation products) that are cost-effective and relatively safe compared with their predecessors. In the context of agricultural pest management, botanical pesticides are best suited for use in organic food production in industrialized countries but can play a much greater role in the production and postharvest protection of food in developing countries.

Botanicals have been in use for a long time for pest control. The compounds offer many environmental advantages. However, their uses during the 20th century have been rather marginal compared with other bio-control methods of pests and pathogens. Improvement in the understanding of plant allelochemical mechanisms of activity offer new prospects for using these substances in crop protection. I’m trying in this article to present different kinds of botanical pesticides came from different recourses and their mode of actions as well as I will try to examine the reasons behind their limited use (disadvantages) and the actual crop protection developments involving biopesticides of plant origin for organic or traditional agricultures to keep our environment clean and safer for humankind and animals.

Zusammenfassung

Die Schädlingsbekämpfung mit chemisch-synthetischen Pestiziden steht weltweit vor wirtschaftlichen und ökologischen Herausforderungen. Die Identifizierung neuer effektiver insektizider Verbindungen ist wichtig, um die zunehmend auftretenden Resistenzen zu bekämpfen. Botanische Pestizide sind seit langem als attraktive Alternativen zu chemisch-synthetischen Pestiziden zur Schädlingsbekämpfung angekündigt worden, weil Pestizide aus pflanzlicher Herkunft weniger Gefahren für die Umwelt und/oder die menschliche Gesundheit birgen. Die wissenschaftliche Literatur dokumentiert eine Vielzahl von Untersuchungen zur Bioaktivität pflanzlichen Stoffe deren Derivate geeignet sind, gegen Arthropoden als Schädlinge eingesetzt zu werden. Aktuell werden aber nur eine Handvoll pflanzlicher Stoffe in der Landwirtschaft in den Industrieländern verwendet. Es gibt nur wenige Hinweise auf eine wirtschaftliche Entwicklung der neuen botanischen Produkte. Zum Beispiel sind die Wirkstoffe Pyrethrum und Neem kommerziell gut etabliert und auch Pestizide auf Basis pflanzlicher ätherischer Ölen sind am Markt zu finden. Der Einsatz von Rotenon scheint aufgrund von Nebenwirkungen zu schwinden. Eine Reihe von pflanzlichen Substanzen sind interessant für den Einsatz als Fraßhemmer, und als Repellents, aber abgesehen von einigen natürlichen Insektenschutzmitteln gibt es kaum kommerziellen Einsatz für die pflanzlichen Substanzen. Mehrere Faktoren begrenzen den Erfolg von pflanzlichen Stoffen, hier sind zum Beispiel regulatorische Barrieren zu nennen.

Im Zusammenhang mit der landwirtschaftlichen Schädlingsbekämpfung, sind botanische Pestizide bestens für den Einsatz in der ökologischen Bio-Produktion in den Industrieländern geeignet, sie können aber auch eine größere Rolle bei der Begrenzung von Nachernte- und Lagerverlusten spielen. Die Verbindungen bieten viele Vorteile für die Umwelt. Allerdings sind ihre Anwendungen im 20. Jahrhundert eher marginal im Vergleich zu anderen Verfahren zur Kontrolle von Schädlingen und Krankheitserregern. Die Verbesserungen bei der Aufklärung der Mechanismen der Pflanzen mit allelochemischer Aktivität bieten neue Perspektiven für die Verwendung dieser Stoffe als Pflanzenschutzmitteln. In dem vorliegenden Artikel werden verschiedene Wirkmechanismen von Bio-Pestiziden vorgestellt und Gründe für den derzeit begrenzten Einsatz genannt.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Abd El-Aziz SE, El-Hawary FMA (1997) Inhibitory effects of some essential oils on the development of the cotton leafworm, Spodoptera littoralis (Boisd.). J Egypt German Soc Zool 22:117–130

    Google Scholar 

  2. Abd El-Aziz SE, Sharaby AM (1997) Some biological effects of white mustard oil, Brassica alba against the cotton leafworm, Spodoptera littoralis (Boisd.). A Schädlingskunde, Pflanzenschutz, Umweltschutz 70:62–64

    Google Scholar 

  3. Abdallah SA, Barakat AA, Badawy HMA, Soliman MMM (2004) Insecticidal activity of different wild plant extracts against Aphis craccivora Koch. Egypt J Biol Pest Control 14:165–173

    Google Scholar 

  4. Abdelgaleil SAM (2010) Molluscicidal and insecticidal potential of monoterpenes on the white gardensnail, Theba pisana (Muller) and the cotton leafworm, Spodoptera littoralis (Boisd.). Appl Entomol Zool 45:425–433

    CAS  Article  Google Scholar 

  5. Abdelgaleil SAM, El-Aswad AF (2005) Antifeedant and growth inhibitory effects of Tetranortriterpenoids isolated from three Meliaceous species on the cotton leafworm, Spodoptera littoralis (Boisd.). J Appl Sci Res 1:234–241

    Google Scholar 

  6. Abdelgaleil SA, Abbassy MA, Belal AS, Abdel Rasoul MA (2008) Bioactivity of two major constituents isolated from the essential oil of Artemisia judaica L. Bioresource Technol 99:5947–5950

    CAS  Article  Google Scholar 

  7. Abdel-Khalek AA, Amer SA, Momen FM (2010) Repellency and toxicity of extract from Francoeria crispa (Forssk) to Eutetranychus orientalis (Klein) (Acari: Tetranychidae). Archiv Phytopathol & Plant Prot 44:441–445

    Article  Google Scholar 

  8. Adel MM, El-Hawary FM, Abdel-Aziz NF, Sammour EA (2010) Some physiological, biochemical and histopathological effects of Artemisia monosperma against the cotton leafworm, Spodoptera littoralis. Arch Phytopathol & Plant Prot 43:1098–1110.

    CAS  Article  Google Scholar 

  9. Akhtar Y, Rankin CH, Isman MB (2003) Decreased response to feeding deterrents following prolonged exposure in the larvae of a generalist herbivore, Trichoplusia ni (Lepidoptera: Noctuidae). J Insect Behav 16:811–831

    Article  Google Scholar 

  10. Alburo R, Olofson H (1987) Agricultural history and the use of botanical insecticides in Argao, Cebu. Philipp Quar Cul & Soc 15:151–172

    Google Scholar 

  11. Allan EJ, Eeswara JP, Jarvis AP, Mordue Luntz AJ, Morgan ED, Stuchbury T (2002) Induction of hairy root cultures of Azadirachta indica A. Juss. and their production of azadirachtin and other important insect bioactive metabolites. Plant Cell Rep 21:374–379

    CAS  Article  Google Scholar 

  12. Amer SA, Momen FM (2002) Effect of some essential oil on predacious mite Amblyseius swirskii (Phytoseiidae). Acta Phyto Entomol Hung 37:281–286

    CAS  Article  Google Scholar 

  13. Amer SA, Momen FM (2005) Effect of French lavender essential oil on some predacious mites of the family Phytoseiidae. Acta Phyto Entomol Hung 40:409–415

    CAS  Article  Google Scholar 

  14. Antonious GF (2004) Residues and halflives of pyrethrins on field-grown pepper and tomato. J Environ Sci Health B39:491–503

    CAS  Article  Google Scholar 

  15. Arcury TA, Quandt SA, Bart DB, Hoppin JA, McCauley L, Grzywacs JG, Robson MG (2006) Farmworker exposure to pesticides: methodology issues for the collection of comparable data. Environ Health Persp 11:923–928

    Article  CAS  Google Scholar 

  16. Ascher KRS, Schmutterer H, Mazor M, Zebitz CPW, Naqvi SNH (2002) The Persian lilac or chinaberry tree: Melia azedarach L. Neem Found, Mumbai, pp 770–820

  17. Atkinson BL, Blackman AJ, Faber H (2004) The degradation of the natural pyrethrins in crop storage. J Agric Food Chem 52:280–287

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Auger J, Thibout E (2002) Substances soufrées des Allium et des Crucifères et leurs potentialités phytosanitaires. In: Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides d’Origine Végétale. Lavoisier Tech & Doc, Paris, pp 77–95

  19. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils. Food Chem Toxicol 46:446–475

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Belmain S, Stevenson P (2001) Ethnobotanicals in Ghana: reviving and modernizing age-old farmer practice. Pestic Outlook 12:233–338

    Article  Google Scholar 

  21. Belmain SR, Neal GE, Ray DE, Golob P (2001) Insecticidal and vertebrate toxicity associated with ethnobotanicals used as post-harvest protectants in Ghana. Food Chem Toxicol 39:287–291

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Bernays EA (1990) Plant secondary compounds deterrent but not toxic to the grass specialist acridid Locusta migratoria: implications for the evolution of graminivory. Entomol Exp Appl 54:53–56

    CAS  Article  Google Scholar 

  23. Bernays EA (1991) Relationship between deterrence and toxicity of plant secondary compounds for the grasshopper Schistocerca americana. J Chem Ecol 17:2519–2526

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systematic pesticide exposure reproduces features of Parkinson’s disease. Nature Neurosci 3:1301–1306

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Bloomquist JR (1996) Ion channels as targets for insecticides. Ann Rev Entomol 41:163–190

    CAS  Article  Google Scholar 

  26. Bloomquist JR (2003) Chloride channels as tools for developing selective insecticides. Arch Insect Biochem & Physiol 54:145–156

    CAS  Article  Google Scholar 

  27. Bloomquist JR, Boina DR, Chow E, Carlier PR, Reina M, Gonzalez-Coloma A (2008) Mode of action of the plant-derived silphinenes on insect and mammalian GABAA receptor/chloride channel complex. Pestici Biochem & Physiol 91:17–23

    CAS  Article  Google Scholar 

  28. Boeke SJ, Baumgart IR, van Loon JJA, van Huis A, Dicke M, Kossou DK (2004a) Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. J Stored Prod Res 40:423–438

  29. Boeke SJ, Kossou DK, van Huis A, van Loon JJA, Dicke M (2004b) Field trials with plant products to protect stored cowpea against insect damage. Int J Pest Manag 50:1–9

  30. Bomford MK, Isman MB (1996) Desensitization of fifth instar Spodoptera litura (Lepidoptera: Noctuidae) to azadirachtin and neem. Entomol Exp Appl 81:307–313

    CAS  Article  Google Scholar 

  31. Bradbury SP, Coats JR (1989) Comparative toxicology of the pyrethroid insecticides. Rev Environ Contam Toxicol 108:134–177

    Google Scholar 

  32. Brown AE (2005) Mode of action of insecticides and related pest control chemicals for production agriculture, ornamentals and turf. Pesticide Info Leaflet Nr 43:1–13. http://pesticide.umd.edu

  33. Buckle J (2003) Clinical aromatherapy: essential oils in practice. Churchill Livingstone, Edinburgh, p 416

    Google Scholar 

  34. Bussaman P, Namsena P, Rattanasena P, Chandrapatya A (2012a) Effect of crude leaf extracts on Colletotrichum gloeosporioides (Penz.) Sacc. Psyche, Article ID 309046, pp 1–6. doi:10.1155/2012/309046

  35. Bussaman P, Sa-uth C, Rattanasena P, Chandrapatya A (2012b) Effect of crude plant extracts on Mushroom Mite, Luciaphorus sp. (Acari: Pygmephoridae). Psyche, Article ID 150958, pp 1–5. doi:10.1155/2012/150958

  36. Buta JG, Lusby WR, Neal JW Jr, Waters RM, Piuarelli GW (1993) Sucrose esters from Nicotiana gossei active against the greenhouse whitefly, Ttialeurodes vaporatiorwll. Phytochemistry 22:859–864

    Article  Google Scholar 

  37. Cabizza M, Angioni A, Melis M, Cabras M, Tuberoso CV, Cabras P (2004) Rotenone and rotenoids in cubé resins, formulations, and residues on olives. J Agric Food Chem 52:288–293

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Caboni P, Cabras M, Angioni A, Russo M, Cabras P (2002) Persistence of azadirachtin residues on olives after field treatment. J Agric Food Chem 50:3491–3494

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Cabras P, Caboni P, Cabras M, Angioni A, Russo M (2002) Rotenone residues on olives and in olive oil. J Agric Food Chem 50:2576–2580

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Cagen SZ, Malley LA, Parker CM, Cardiner TH, van Gelder GA, Jud VA (1984) Pyrethroid-mediated skin sensory stimulation characterized by a new behavioral paradigm. Toxicol Appl Pharmacol 76:270–279

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Carpinella MC, Defago MT, Valladares G, Palacios SM (2003) Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J Agric Food Chem 51:369–374

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Casanova H, Ortiz C, Pel’aez C, Vallejo A, Moreno ME, Acevedo M (2002) Insecticide formulations based on nicotine oleate stabilized by sodium caseinate. J Agric Food Chem 50:6389–6394

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Casida JE (1973) Pyrethrum the natural insecticide. Academic Press, New York, p 329

    Google Scholar 

  44. Casida JE, Quistad GB (1995) Pyrethrum flowers: production, chemistry, toxicology and uses. Oxford Univ Press, Oxford, p 356

    Google Scholar 

  45. CDPR (California Department of Pesticide Regulation) (2005) Summary of pesticide use report data 2003, indexed by chemical. http://www.cdpr.ca.gov/ (Accessed: 25 March 2013)

  46. Céspedes CL, Calderón JS, Lina L, Aranda E (2000) Growth inhibitory effects on fall armyworm Spodoptera frugiperda of some limonoids isolated from Cedrela spp (Meliaceae). J Agric Food Chem 48:1903–1908

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Céspedes CL, Avila JG, Marin JC, Domínguez ML, Torres P, Aranda E (2006) Natural compounds as antioxidant and molting inhibitors can play a role as a model for search of new botanical pesticides, Rai and Carpinella (eds) Naturally Occurring Bioactive Compounds, ISBN-13:978–0-444-52241-2, Chapter 1:1–27

    Google Scholar 

  48. Charleston DS (2004) Integrating biological control and botanical pesticides for management of Plutella xylostella. PhD Thesis Wageningen Univ, p 176

  49. Chen W, Isman MB, Chiu SF (1995) Antifeedant and growth inhibitory effects of the limonoid toosendanin and Melia toosendan extracts on the variegated cutworm, Peridroma saucia (Lep., Noctuidae). J Appl Entomol 119:367–370

    Article  Google Scholar 

  50. Childs FJ, Chamberlain JR, Antwi EA et al (2001) Improvement of neem and its potential benefits to poor farmers. Dept of Internat Develop, UK, p 32

  51. Chiu SF (1988) Recent advances in research on botanical insecticides in China. In: Arnason AT, Philogène BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society, Washington, DC. pp 69–77

    Google Scholar 

  52. Coats JR (1990) Mechanisms of toxic action and structure-activity relationships for organochlorine and synthetic pyrethroid insecticides. Environ Health Perspect 87:255–262

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Coats JR (1994) Risks from natural versus synthetic insecticides. Annu Rev Entomol 39:489–515

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Coats JR, Symonik DM, Bradbury SP, Dyer SD, Timson LK, Atchison GJ (1989) Toxicology of synthetic pyrethroids in aquatic organisms: an overview. Environ Toxicol Chem 8:671–679

    CAS  Article  Google Scholar 

  55. Coats JR, Karr LL, Drewes CD (1991) Toxicity and neurotoxic e!ects of monoterpenoids in insects and earthworms. Am Chem Soc Symp Ser 449:306–316

    Google Scholar 

  56. Coppen JJW (1995) Flavours and fragrances of plant origin. Food and Agriculture Organization, Rome, p 101

    Google Scholar 

  57. Copping LG (2001) The biopesticide manual, 2nd edn. British Crop Protection Council, Farnham, p 528

    Google Scholar 

  58. Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    CAS  Article  Google Scholar 

  59. Davies IH (1985) The pyrethroids: an historical introduction. In: Leahey JP (ed) The pyrethroid insecticides. Taylor and Francis, Philadelphia, p 440

    Google Scholar 

  60. Delaplane KS (1992) Controlling tracheal mites (Acari: Tarsonemidae) in colonies of honey bees (Apidae) with vegetable oil and menthol. J Econ Entomol 85:2118–2124

    CAS  Article  Google Scholar 

  61. Deng AL, Ogendo JO, Owuor G, Bett PK, Omolo EO, Mugisha-Kamatenesi M, Mihale JM (2009) Factors determining the use of botanical insect pest control methods by small-holder farmers in the Lake Victoria basin, Kenya. African J Environ Sci & Technol 3:108–115

    Google Scholar 

  62. Dev S, Koul O (1997) Insecticides of natural origin. Harwood Acad, Amsterdam, p 365

    Google Scholar 

  63. Dimetry NZ (2012) Prospects of botanical pesticides for the future in integrated pest management programme (IPM) with special reference to neem uses in Egypt. Arch Phytopathol & Plant Prot 45:1138–1161

    CAS  Article  Google Scholar 

  64. Dimetry NZ, El-Hawary FMA (1997) Synergistic effect of some additives on the biological activity and toxicity of Neem-based formulations against the cowpea aphid, Aphis craccivora Koch. Internat J Tropical Insect Sci 17:395–399

    CAS  Article  Google Scholar 

  65. Dimetry NZ, Amer SAA, Reda AS (1993) Biological activity of 2 Neem seed kernel extracts against the 2-spotted spider mite Tetranychus urticae. J Appl Entomol 116: 308–312

    Article  Google Scholar 

  66. Dimetry NZ, Abd El-Salam AME, El-Hawary FMA (2010) Importance of plant extract formulations in managing different pests attacking beans in new reclaimed area and under storage conditions. Arch Phytopathol & Plant Prot 43:700–711

    Article  Google Scholar 

  67. Dosemeci M, Alavanja MC, Rowland AS, Mage D, Zahm SH, Rothman N, Lubin JH, Hoppin JA, Sandler DP, Blair A (2002) A quantitative approach for estimating exposure to pesticides in the agricultural health study. Ann Occup Hyp 46:245–260

    CAS  Google Scholar 

  68. El-Sayed EI (1982–1983a) Evaluation of the insecticidal properties of the common Indian neem (Azadirachta Indica A Juss) seeds against the Egyptian cotton leaf worm (Spodoptera litoralis) (Boisd.). Bull Entomol Soc Egypt, Econ Ser 13:39–47

    Google Scholar 

  69. El-Sayed EI (1982–1983b) Neem (Azadirachta indica A. Juss) seeds as antifeedant and ovipositional repellent for the Egyptian cotton leafworm Spodoptera littoralis (Boisd.). Bull Entomol Soc Egypt, Econ Ser 13:49–58

    Google Scholar 

  70. El-Hawary FMA, Sammour EA (2006) The bioactivity and mechanism of action of some wild plant extracts on Aphis craccivora. Bull NRC, Egypt 31:545–556

    CAS  Google Scholar 

  71. El-Hosary RA (2011) Evaluation of some essential oils against Sesamia cretica Led. under field conditions. J Am Sci 7:563–568

    Google Scholar 

  72. El-Sebai TN, El-Wakeil NE, Abdallah SA (2005) Efficacy of certain mineral, natural oils and insecticides against the Whitefly, Bemisia tabaci on cucumber plants and their side effects on the associated predators. Bull Entomol Soc Egypt, Econ Ser 31:229–241

    Google Scholar 

  73. El-Shazly AM, Dora G, Wink M (2005) Alkaloids of Haloxylon salicornicum (Moq.) Bunge ex Boiss. (Chenopodiaceae). Pharmazie 60:949–952

    CAS  PubMed  PubMed Central  Google Scholar 

  74. El-Wakeil NE, Gaafar N, Vidal S (2006) Side effect of some neem products on natural enemies of Helicoverpa, Trichogramma spp. And Chrysoperla carnea. Archiv Phytopathol & Plant Prot 39:445–455

    Article  Google Scholar 

  75. El-Wakeil N, Gaafar N, Sallam A, Volkmar C (2013) Side effects of insecticide applications on natural enemies and possibility of integration in plant protection strategies. Published in book “Insecticides: development of safer and more effective technologies” (ISBN 978-953-51-0958-7) Intech Open Access Publisher, pp 3–56

  76. Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol 130C:325–337

    CAS  Google Scholar 

  77. Enan EE (2005a) Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem & Physiol 59:161–171

  78. Enan EE (2005b) Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem & Molec Biol 35:309–321

  79. Fang N, Casida J (1998) Anticancer action of cubè insecticide: correlation for rotenoid constituents between inhibition of NADH-ubiquinone oxidoreductase and induced ornithine decarboxylase activities. Proc. Natl Acad Sci USA 95:3380–3384

    CAS  Article  Google Scholar 

  80. Farone WA, Palmer T, Puterka J (2002) Polyol ester insecticides and method of synthesis. U.S. Patent 6,419,941

  81. Feng R, Chen W, Isman MB (1995) Synergism of malathion and inhibition of midgut esterase activities by an extract from Melia Toosendan (Meliaceae). Pestic Biochem Physiol 53:34–41

    CAS  Article  Google Scholar 

  82. Fields PG, Xie YS, Hou X (2001) Repellent effect of pea (Pisum sativum) fractions against stored-product pests. J Stored Prod Res 37:359–370

    PubMed  PubMed Central  Article  Google Scholar 

  83. Floris I, Satta A, Cabras P, Garau VL, Angioni A (2004) Comparison between two thymol formulations in the control of Varroa destructor: effectiveness, persistence and residues. J Econ Entomol 97:187–191

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Forget G, Goodman T, de Villiers A (eds) (1993) Impact of pesticide use on health in developing countries. Int Dev Res Centre, Ottawa p 335

  85. Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bites. N Engl J Med 347:13–18

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Gilkeson LA, Adams RW (2000) Integrated pest management manual for landscape pests in British Columbia. Province of British Columbia Press, p 130

  87. Glynne-Jones A (2001) Pyrethrum. Pestic Outlook 12:195–198

    Article  Google Scholar 

  88. Gonzalez-Coloma A, Valencia F, Martin N, Hoffmann JJ, Hutter L et al (2002) Silphinene sesquiterpenes as model insect antifeedants. J Chem Ecol 28:117–129

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Grundy DL, Still CC (1985) Inhibition of acetylcholinesterases by pulegone1, 2- epoxide. Pestici Biochem & Physiol 23:383–388

    CAS  Article  Google Scholar 

  90. Guerrero A, Rosell G (2004) Enzyme inhibitors in biorational approaches for pest control. Mini-Rev Med Chem 4:757–767

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Guerrero A, Rosell G (2005) Biorational approaches for insect control by enzymatic inhibition. Curr Med Chem 12:461–469

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Hayes WJ Jr (1982) Pesticides studied in man. Williams & Wilkins, Baltimore, p 672

    Google Scholar 

  93. Haynes KF (1988) Sublethal effects of neurotoxic insecticides on insect behaviour. Ann Rev Entomol 33:149–168

    CAS  Article  Google Scholar 

  94. Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson DG (eds) (1997) Phytochemicals for pest control. American Chemical Society, Washington, DC, p 372

    Google Scholar 

  95. Henk PM, Vijverberg JM, Van Der Zalm, Van Den Bercken J (1982) Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves. Nature 295:601–603. doi:10.1038/295601a0

    Article  Google Scholar 

  96. Henn T, Weinzierl R, Gray M, Steffey K (1991) Alternatives in insect management: field and forage crops. Cooperative extension service, University of Illinois at Urbana-Champaign, Circ. 1307

  97. Hollingworth R, Ahmmadsahib K, Gedelhak G, McLaughlin J (1994) Newinhibitors of complex I of the mitochondrial electron transport chain with activity as pesticides. Biochem Soc Trans 22:230–233

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Hussein HI (2005) Composition of essential oils isolated from three plant species and their molluscicidal activity against Theba pisana snails. J Pest Cont Environ Sci 13:15–24

    Google Scholar 

  99. Immaraju JA (1998) The commercial use of azadirachtin and its integration into viable pest control programmes. Pestic Sci 54:285–289

    CAS  Article  Google Scholar 

  100. Ismail AI, Abd El-Salam AME, Soliman MMM (2004) Field evaluation of plant derivative and chemical compounds and their mixtures against Ceroplastes floridensis Com. on orange trees. Egypt J Biol Pest Control 14:175–179

    Google Scholar 

  101. Isman MB (1993) Growth inhibitory and antifeedant effects of azadirachtin on six noctuids of regional economic importance. Pestic Sci 38:57–63

    CAS  Article  Google Scholar 

  102. Isman MB (1997) Neem and other botanical insecticides: barriers to commercialization. Phytoparasitica 25:339–344

    Article  Google Scholar 

  103. Isman MB (1999) Pesticides based on plant essential oils. Pestic Outlook 10:68–72

    CAS  Google Scholar 

  104. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    CAS  Article  Google Scholar 

  105. Isman MB (2002) Insect antifeedants. Pestic Outlook 13:152–157

    CAS  Article  Google Scholar 

  106. Isman MB (2004) Factors limiting commercial success of neem insecticides in North America and Western Europe. In: Koul O, Wahab S (eds) Neem: today and in the new millennium. Kluwer Acad, Dordrecht, p 33–41

    Google Scholar 

  107. Isman MB (2005) Problems and opportunities for the commercialization of botanical insecticides. In Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides of plant origin. Lavoisier, Paris, pp 283–291

    Google Scholar 

  108. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64:8–11

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Isman MB, Matsuura H, MacKinnon S, Durst T, Towers GHN, Arnason JT (1996) Phytochemistry of the Meliaceae. So many terpenoids, so few insecticides. In: Romeo JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy. Plenum, New York, pp 155–178

    Google Scholar 

  111. Jacobson M (ed) (1989) Focus on phytochemical pesticides, vol 1: the neem tree. CRC Press, Boca Raton, p 178

    Google Scholar 

  112. Johnson HA, Oberlies NH, Alali FQ, McLaughlin JE (2000) Thwarting resistance: annonaceous acetogenins as new pesticidal and antitumor agents. In Cutler SJ, Cutler JG (eds) Biological active natural products: pharmaceuticals. Boca Raton, CRC Press, pp 173–83

  113. Jayasekara TK, Stevenson PC, Hall DR, Belmain SR (2005) Effect of volatile constituents from Securidaca longepedunculata on insect pests of stored grain. J Chem Ecol 31:303–313

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Katz J, Prescott K, Woolf AD (1996) Strychnine poisoning from a Cambodian traditional remedy. Am J Emerg Med 14:475–477

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. Keane S, Ryan MF (1999) Purification, characterisation and inhibition of monoterpenes of acetylcholonesterase from the waxmoth, Galleria melonella. Insect Biochem & Molec Biol 29:1097–1104

    CAS  Article  Google Scholar 

  116. Khambay BP, Batty D, Jewess PJ, Bateman GL, Hollomon DW (2003) Mode of action and pesticidal activity of the natural product dunnione and of some analogues. Pest Manag Sci 59:174–182

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. Khater HF (2012) Ecosmart biorational insecticides: alternative insect control strategies, insecticides- advances in integrated pest management, ed F Perveen, ISBN: 978-953-307-780-2, InTech publisher, pp 17–60

  118. Klein Gebbinck EA, Jansen BJM, de Groot A (2002) Insect antifeedant activity of clerodane dieterpenes and related model compounds. Phytochemistry 61:737–770

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 58:1101–1106

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. Koul O, Dhaliwal GS (2001) Phytochemical biopesticides. Harwood Acad, Amster, p 223

    Google Scholar 

  121. Kraus W (2002) Azadirachtin and other triterpenoids. Neem Found, Mumbai, pp 39–111

  122. Kubo I (2000) Tyrosinase inhibitors from plants. Rev Latinoamer Quim 28:7–20

    CAS  Google Scholar 

  123. Kukel CF, Jennings KR (1994) Delphinium alkaloids as inhibitors of alpha-bungarotoxin binding to rat and insect neural membranes. Can J Physiol & Pharmacol 72:104–107

    CAS  Article  Google Scholar 

  124. Kurita N, Miyaji M, Kurane R, Takahara Y (1981) Antifungal activity of components of essential oils. Agric Biol Chem 45:945–952

    CAS  Google Scholar 

  125. Leatemia JA, Isman MB (2004a) Efficacy of crude seed extracts of Annona squamosa against Plutella xylostella L. in the greenhouse. Int J Pest Manag 50:129–133

  126. Leatemia JA, Isman MB (2004b) Insecticidal activity of crude seed extracts of Annona spp., Lansium domesticum and Sandoricum koetjape against lepidopteran larvae. Phytoparasitica 32:30–37

  127. Lewis MA, Arnason JT, Philogene, BJR, Rupprecht JK, Mclaughlin JL (1993) Inhibition of respiration at site I by Asimicin, an insecticidal Acetogenin of the Pawpaw, Asimina triloba (Annonaceae). Pestic Biochem & Physiol 45:15–23

    CAS  Article  Google Scholar 

  128. Londershausen M, Leight W, Lieb F, Moeschler H (1991) Molecular mode of action of annonins. Pestic Sci 33:427–438

    CAS  Article  Google Scholar 

  129. Lowery DT, Isman MB (1995) Toxicity of neem to natural enemies of aphids. Phytoparasitica 23:297–306

    CAS  Article  Google Scholar 

  130. Maistrello L, Henderson G, Laine RA (2004) Efficacy of vetiver oil and nootkatone as soil barriers against Formosan subterranean termite. J Econ Entomol 94:1532–1537

    Article  Google Scholar 

  131. Marco GJ, Hollingworth RM, Durham W (eds) (1987) Silent Spring Revisited. American Chemical Society, Washington, DC, p 214

    Google Scholar 

  132. Matsuzaki T, Shinozaki Y, Suhara S, Tobita T, Shigematsu H, Koiwai A (1991) Leaf surface glycolipids from Nicotiana acuminate & Nicotiana pauciflora. Agric Biol Chem 55:1417–1419

    CAS  Google Scholar 

  133. McLaughlin GA (1973) History of pyrethrum. Academic, New York, pp 3–15

    Google Scholar 

  134. McLaughlin JL, Zeng L, Oberlies NJ, Alfonso D, Johnson JA, Cummings BA (1997) Annonaceous acetogenins as new natural pesticides: recent progress. Washington, DC Am Chem Soc, pp 117–133

    Google Scholar 

  135. Mikolajczak KL, McLaughlin JL, Rupprecht JK (1988) Control of Pests with Annonaceous Acetogenins. (divisional patent on asimicin) U.S. Patent No. 4,855,319

  136. Miyazawa M, Watanabe H, Kameoka H (1997) Inhibition of acetylcholinesterase activity by monoterpenoids with a pmenthane skeleton. J Agric & Food Chem 45:677–679

    CAS  Article  Google Scholar 

  137. Moeschler HF, Pfuger W, Wendlisch D (1987) Pure annonin and a process for the preparation thereof. U.S. Patent No. 4,689,323

  138. Morse S, Ward A, McNamara N, Denholm I (2002) Exploring the factors that influence the uptake of botanical insecticides by farmers: a case study of tobacco-based products in Nigeria. Exp Agric 38:469–479

    CAS  Article  Google Scholar 

  139. Narahashi T (1976) Effects of insecticides on nervous conduction and synaptic transmission Editor(s): Wilkinson, Christopher Foster. Insectic Biochem Physiol pp 327–352 nPublisher: Plenum, New York, NY CODEN: 34LXAP; English

    Google Scholar 

  140. Nathanson JA, Hunnicutt EJ, Kantham L, Scavon C (1993) Cocaine as a naturally occurring insecticide. Proc National Acad Sci USA 90:9645–9648

    CAS  Article  Google Scholar 

  141. National Research Council (1992) Neem. A tree for solving global problems. National Academy Press, Washington, DC, p 141

  142. National Research Council (2000) The future role of pesticides in US Agriculture. National Academy Press, Washington, DC, p 301

  143. Naumann K, Isman MB (1996) Toxicity of neem (Azadirachta indica A. uss) seed extracts to larval honeybees and estimation of dangers from field applications. Am Bee J 136:518–520

    Google Scholar 

  144. Ngoh SP, Hoo L, Pang FY, Huang Y, Kini MR, Ho SH (1998) Insecticidal and repellent properties of nine volatile constituents of essential oils against the American cockroach. Periplaneta Americana (L.). Pestic Sci 54:261–268

    CAS  Article  Google Scholar 

  145. Okuna Y, Sen T, Ito S, Kaneko H, Watanabe T et al (1986) Differential metabolism of fenvalerate and granuloma fonnation. II. Toxicological significance of a lipophilic conjugate from fenvalerate. Toxicol Appl Pharmacol 83:157–169

    Article  Google Scholar 

  146. Pavela R, Vrchotová N, Šerá B (2008) Growth inhibitory effect of extracts from Reynoutria sp. plants against Spodoptera littoralis larvae. Agrociencia 42:573–584

    Google Scholar 

  147. Perry AS, Yamamoto I, Ishaaya I, Perry RY (1998) Insecticides in Agriculture and Environment: Retrospects and Prospects. Springer-Verlag, Berlin, p 261

    Google Scholar 

  148. Pesticide Action Network (2004) Pesticide registration by country. http://www. pesticideinfo.org/SearchCountries.jsp (Accessed: 15 April 2013)

  149. Peterson C, Coats J (2001) Insect repellents past, present and future. Pestic Outlook 12:154–158

    Article  Google Scholar 

  150. Philogène BJR, Arnason JT, Towers GHN, Abramowski Z, Campos F, Champagne D, McLachlan D (1984) Berberine: a naturally occurring phototoxic alkaloid. J Chem Ecol 10:115–123

    PubMed  PubMed Central  Article  Google Scholar 

  151. Philogène BJR, Regnault-Roger C, Vincent C (2005) Botanicals: yesteday’s and today’s promises. In: Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides of plant origin. Lavoisier and Andover, UK, pp 1–15

  152. Pittarelli GW, Buta JG, Neal JW Jr, Lusby WR, Waters RM (1993) Biological pesticide derived from Nicotiana Plants. U.S. Patent No. 5,260,281

  153. Prakash A, Rao J (1997) Botanical pesticides in agriculture. CRC Press, Boca Raton, p 461

    Google Scholar 

  154. Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140:1363–1372

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. Quarles W (1996) EPA exempts least-toxic pesticides. IPM Pract 18:16–17

    Google Scholar 

  156. Ratra GS, Casida JE (2001) GABA receptor subunit composition relative to insecticide potency and selectivity. Toxicol Letters 122:215–222

    CAS  Article  Google Scholar 

  157. Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920

    CAS  Article  Google Scholar 

  158. Regnault-Roger C, Philogène BJR (2008) Past and current prospects for the use of botanicals and plant allelochemicals in integrated pest management. Pharmac Biol 46:41–52

    CAS  Article  Google Scholar 

  159. Regnault-Roger C, Hamraoui A, Holeman M, Théron E, Pinel R (1993) Insecticidal effect of essential oils from mediterranean plants upon A. obtectus Say (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). J Chem Ecol 19:1231–1242

    Article  Google Scholar 

  160. Regnault-Roger C, Philogène BJR, Vincent C (eds) (2005) Biopesticides of plant origin. Lavoisier, Paris, p 313

  161. Rembold H, Mwangi R (2002) Melia volkensii Gürke. Neem Found, Mumbai, pp 827–32

  162. Rice PJ, Coats JR (1994) Insecticidal properties of monoterpenoid derivatives to the house fly (Muscidae) and red flour beetle (Tenebrionidae). Pestic Sci 41:195–202

    CAS  Article  Google Scholar 

  163. Richards AG, Cutkomp LA (1945) Cholinesterase of insect nerves. J Cell Comp Physiol 26:57–61

    CAS  Article  Google Scholar 

  164. Ryan MF, Byrne O (1988) Plant-insect coevolution and inhibition of acetylcholineesterase. J Chem Ecol 14:1965–1975

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. Salama HS, Sharaby AM (1988) Feeding deterrence induced by some plants in Spodoptera littoralis and their potentiating effect on Bacillus thuringiensis Berliner. Internat J Tropical Insect Sci 9: 573–577

    Article  Google Scholar 

  166. Salama HS, Wassel G, Saleh R (1970) Resistance of some varieties of Mangifera indica (L.) to scale insects infestation due to flavonoids. Curr Sci 39:497

    Google Scholar 

  167. Sallam AA, Volkmar C, El-Wakeil NE (2009) Effectiveness of different bio–rational insecticides applied on wheat plants to control cereal aphids. J Plant Dis & Prot 116:283–287

    CAS  Article  Google Scholar 

  168. Sallena RC (1989) Insecticides from neem. In: Amason IT, Phllogene BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society, Washington, DC, p 213

  169. Sammour EA, El-Hawary FM, Abdel-Aziz NF (2011) Comparative study on the efficacy of neemix and basil oil formulations on the cowpea aphid Aphis craccivora Koch. Arch Phytopathol & Plant Prot 44:655–670

    CAS  Article  Google Scholar 

  170. Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  171. Schmutterer H (ed) (2002) The neem tree. Neem Found, Mumbai, p 892

  172. Sharaby AM (1988) Anti-insect properties of the essential oil of lemon grass, Cymbopogen citratus against Spodoptera exigua (Hbn). Internat J Trop Insect Sci 9:77–80

    Article  Google Scholar 

  173. Shepard H (1951) The chemistry and action of insecticides. McGraw-Hill, New York, p 504

    Google Scholar 

  174. Spollen KM, Isman MB (1996) Acute and sublethal effects of a neem insecticide on the commercial biocontrol agents Phytoseiulus persimilis and Amblyseius cucumeris and Aphidoletes aphidimyza. J Econ Entomol 89:1379–1386

    CAS  Article  Google Scholar 

  175. Stroh J, Wan MT, Isman MB, Moul DJ (1998) Evaluation of the acute toxicity to juvenile Pacific coho salmon and rainbow trout of some plant essential oils, a formulated product, and the carrier. Bull Environ Contam Toxicol 60:923–930

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. Tamayo MC, Rufat M, Bravo JM, San Segundo B (2000) Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta 211:62–71

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  177. Tang JD, Gilboa S, Roush RT, Shelton AM (1997) Inheritance, stability and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) from Florida. J Econ Entomol 90:732–741

    Article  Google Scholar 

  178. Thacker JMR (2002) An introduction to arthropod pest control. Cambridge University Press, Cambridge, p 343

  179. Thibout E, Auger J (1997) Composés soufrés des Allium et lutte contre les insectes. Acta Bot Gallica 144:419–426

    Article  Google Scholar 

  180. Thibout E, Lecomte C, Auger J (1986) Substances soufrées des Allium et insectes. Acta Bot Gallica 143:137–142

    Article  Google Scholar 

  181. Trumble JT (2002) Caveat emptor: safety considerations for natural products used in arthropod control. Am Entomol 48:7–13

    Article  Google Scholar 

  182. Wan MT, Watts RG, Isman MB, Strub R (1996) An evaluation of the acute toxicity to juvenile Pacific northwest salmon of azadirachtin, neem extract and neem-based products. Bull Environ Contam Toxicol 56:432–439

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. Ware GW (1983) Pesticides. Theory and application. Freeman, San Francisco, p 308

    Google Scholar 

  184. Ware GW (1988) The pesticide book. Thomson Publication, USA

  185. Weinzierl RA (2000) Botanical insecticides, soaps, and oils. In: Rechcigl JE, Rechcigl NA (eds) Biological and biotechnological control of insect pests. Lewis Publishers, Boca Raton, pp 101–121

  186. Whittaker RH, Feeny P (1971) Allelochemicals: chemical interactions between species. Science 171:757–770

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  187. Yamamoto C, Kurokawa M (1970) Synaptic potentials recorded in brain slices and their modification by changes in the level of tissue ATP. Exp Brain Res 10:159–170

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  188. Zhao JZ, Li YX, Collins HL, Gusukuma-Minuto L, Mau RFL et al (2002) Monitoring and characterization of diamondback moth resistance to spinosad. J Econ Ent 95:430–436

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. Ahmed Sallam forreviewing this manuscript in the early stage.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr. Nabil E. El-Wakeil.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10343-018-0415-2.

This article (1) has been retracted by the Editor in Chief due to significant overlap with a previously published article (2). The author does not agree to this retraction.

1. “Botanical Pesticides and Their Mode of Action” by Nabil E. El-Wakeil, Gesunde Pflanzen (2013) 65:125–149, DOI https://doi.org/10.1007/s10343-013-0308-3

2. BOTANICAL INSECTICIDES, DETERRENTS, AND REPELLENTS INMODERN AGRICULTURE AND AN INCREASINGLY REGULATEDWORLD by Murray B. Isman, Annu. Rev. Entomol. 2006. 51:45–66, https://doi.org/10.1146/annurev.ento.51.110104.151146

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El-Wakeil, N. RETRACTED ARTICLE: Botanical Pesticides and Their Mode of Action. Gesunde Pflanzen 65, 125–149 (2013). https://doi.org/10.1007/s10343-013-0308-3

Download citation

Keywords

  • Plant-biopesticide
  • Pyrethrum
  • Neem
  • Essential oils
  • Antifeedants
  • Repellents

Schlusswörter

  • Biopestizide
  • Pyrethrum
  • Neem
  • Ätherische Öle
  • Repellents