Advertisement

Gesunde Pflanzen

, Volume 65, Issue 4, pp 125–149 | Cite as

RETRACTED ARTICLE: Botanical Pesticides and Their Mode of Action

  • Nabil E. El-WakeilEmail author
Review Article

Abstract

Pest management is facing economic and ecological challenge worldwide due to human and environmental hazards caused by majority of the synthetic pesticide chemicals. Identification of novel effective insecticidal compounds is essential to combat increasing resistance rates. Botanical pesticides have long been touted as attractive alternatives to synthetic chemical pesticides for pest management because botanicals reputedly pose little threat to the environment or to human health. The body of scientific literature documenting bioactivity of plant derivatives to arthropod pests continues to expand, yet only a handful of botanicals are currently used in agriculture in the industrialized world, and there are few prospects for commercial development of new botanical products. Pyrethrum and neem are well established commercially, pesticides based on plant essential oils have entered the marketplace, and the use of rotenone appears to be waning. A number of plant substances have been considered for use as pest antifeedants, repellents and toxicants, but apart from some natural mosquito repellents, a little commercial success has ensued for plant substances that modify arthropod behavior. Several factors appear to limit the success of botanicals, most notably regulatory barriers and the availability of competing products (newer synthetics and fermentation products) that are cost-effective and relatively safe compared with their predecessors. In the context of agricultural pest management, botanical pesticides are best suited for use in organic food production in industrialized countries but can play a much greater role in the production and postharvest protection of food in developing countries.

Botanicals have been in use for a long time for pest control. The compounds offer many environmental advantages. However, their uses during the 20th century have been rather marginal compared with other bio-control methods of pests and pathogens. Improvement in the understanding of plant allelochemical mechanisms of activity offer new prospects for using these substances in crop protection. I’m trying in this article to present different kinds of botanical pesticides came from different recourses and their mode of actions as well as I will try to examine the reasons behind their limited use (disadvantages) and the actual crop protection developments involving biopesticides of plant origin for organic or traditional agricultures to keep our environment clean and safer for humankind and animals.

Keywords

Plant-biopesticide Pyrethrum Neem Essential oils Antifeedants Repellents 

RETRACTED ARTICLE: Botanische Pestizide und ihre Wirkmechanismen

Zusammenfassung

Die Schädlingsbekämpfung mit chemisch-synthetischen Pestiziden steht weltweit vor wirtschaftlichen und ökologischen Herausforderungen. Die Identifizierung neuer effektiver insektizider Verbindungen ist wichtig, um die zunehmend auftretenden Resistenzen zu bekämpfen. Botanische Pestizide sind seit langem als attraktive Alternativen zu chemisch-synthetischen Pestiziden zur Schädlingsbekämpfung angekündigt worden, weil Pestizide aus pflanzlicher Herkunft weniger Gefahren für die Umwelt und/oder die menschliche Gesundheit birgen. Die wissenschaftliche Literatur dokumentiert eine Vielzahl von Untersuchungen zur Bioaktivität pflanzlichen Stoffe deren Derivate geeignet sind, gegen Arthropoden als Schädlinge eingesetzt zu werden. Aktuell werden aber nur eine Handvoll pflanzlicher Stoffe in der Landwirtschaft in den Industrieländern verwendet. Es gibt nur wenige Hinweise auf eine wirtschaftliche Entwicklung der neuen botanischen Produkte. Zum Beispiel sind die Wirkstoffe Pyrethrum und Neem kommerziell gut etabliert und auch Pestizide auf Basis pflanzlicher ätherischer Ölen sind am Markt zu finden. Der Einsatz von Rotenon scheint aufgrund von Nebenwirkungen zu schwinden. Eine Reihe von pflanzlichen Substanzen sind interessant für den Einsatz als Fraßhemmer, und als Repellents, aber abgesehen von einigen natürlichen Insektenschutzmitteln gibt es kaum kommerziellen Einsatz für die pflanzlichen Substanzen. Mehrere Faktoren begrenzen den Erfolg von pflanzlichen Stoffen, hier sind zum Beispiel regulatorische Barrieren zu nennen.

Im Zusammenhang mit der landwirtschaftlichen Schädlingsbekämpfung, sind botanische Pestizide bestens für den Einsatz in der ökologischen Bio-Produktion in den Industrieländern geeignet, sie können aber auch eine größere Rolle bei der Begrenzung von Nachernte- und Lagerverlusten spielen. Die Verbindungen bieten viele Vorteile für die Umwelt. Allerdings sind ihre Anwendungen im 20. Jahrhundert eher marginal im Vergleich zu anderen Verfahren zur Kontrolle von Schädlingen und Krankheitserregern. Die Verbesserungen bei der Aufklärung der Mechanismen der Pflanzen mit allelochemischer Aktivität bieten neue Perspektiven für die Verwendung dieser Stoffe als Pflanzenschutzmitteln. In dem vorliegenden Artikel werden verschiedene Wirkmechanismen von Bio-Pestiziden vorgestellt und Gründe für den derzeit begrenzten Einsatz genannt.

Schlusswörter

Biopestizide Pyrethrum Neem Ätherische Öle Repellents 

Notes

Acknowledgements

The author is grateful to Prof. Ahmed Sallam forreviewing this manuscript in the early stage.

References

  1. Abd El-Aziz SE, El-Hawary FMA (1997) Inhibitory effects of some essential oils on the development of the cotton leafworm, Spodoptera littoralis (Boisd.). J Egypt German Soc Zool 22:117–130Google Scholar
  2. Abd El-Aziz SE, Sharaby AM (1997) Some biological effects of white mustard oil, Brassica alba against the cotton leafworm, Spodoptera littoralis (Boisd.). A Schädlingskunde, Pflanzenschutz, Umweltschutz 70:62–64Google Scholar
  3. Abdallah SA, Barakat AA, Badawy HMA, Soliman MMM (2004) Insecticidal activity of different wild plant extracts against Aphis craccivora Koch. Egypt J Biol Pest Control 14:165–173Google Scholar
  4. Abdelgaleil SAM (2010) Molluscicidal and insecticidal potential of monoterpenes on the white gardensnail, Theba pisana (Muller) and the cotton leafworm, Spodoptera littoralis (Boisd.). Appl Entomol Zool 45:425–433CrossRefGoogle Scholar
  5. Abdelgaleil SAM, El-Aswad AF (2005) Antifeedant and growth inhibitory effects of Tetranortriterpenoids isolated from three Meliaceous species on the cotton leafworm, Spodoptera littoralis (Boisd.). J Appl Sci Res 1:234–241Google Scholar
  6. Abdelgaleil SA, Abbassy MA, Belal AS, Abdel Rasoul MA (2008) Bioactivity of two major constituents isolated from the essential oil of Artemisia judaica L. Bioresource Technol 99:5947–5950CrossRefGoogle Scholar
  7. Abdel-Khalek AA, Amer SA, Momen FM (2010) Repellency and toxicity of extract from Francoeria crispa (Forssk) to Eutetranychus orientalis (Klein) (Acari: Tetranychidae). Archiv Phytopathol & Plant Prot 44:441–445CrossRefGoogle Scholar
  8. Adel MM, El-Hawary FM, Abdel-Aziz NF, Sammour EA (2010) Some physiological, biochemical and histopathological effects of Artemisia monosperma against the cotton leafworm, Spodoptera littoralis. Arch Phytopathol & Plant Prot 43:1098–1110.CrossRefGoogle Scholar
  9. Akhtar Y, Rankin CH, Isman MB (2003) Decreased response to feeding deterrents following prolonged exposure in the larvae of a generalist herbivore, Trichoplusia ni (Lepidoptera: Noctuidae). J Insect Behav 16:811–831CrossRefGoogle Scholar
  10. Alburo R, Olofson H (1987) Agricultural history and the use of botanical insecticides in Argao, Cebu. Philipp Quar Cul & Soc 15:151–172Google Scholar
  11. Allan EJ, Eeswara JP, Jarvis AP, Mordue Luntz AJ, Morgan ED, Stuchbury T (2002) Induction of hairy root cultures of Azadirachta indica A. Juss. and their production of azadirachtin and other important insect bioactive metabolites. Plant Cell Rep 21:374–379CrossRefGoogle Scholar
  12. Amer SA, Momen FM (2002) Effect of some essential oil on predacious mite Amblyseius swirskii (Phytoseiidae). Acta Phyto Entomol Hung 37:281–286CrossRefGoogle Scholar
  13. Amer SA, Momen FM (2005) Effect of French lavender essential oil on some predacious mites of the family Phytoseiidae. Acta Phyto Entomol Hung 40:409–415CrossRefGoogle Scholar
  14. Antonious GF (2004) Residues and halflives of pyrethrins on field-grown pepper and tomato. J Environ Sci Health B39:491–503CrossRefGoogle Scholar
  15. Arcury TA, Quandt SA, Bart DB, Hoppin JA, McCauley L, Grzywacs JG, Robson MG (2006) Farmworker exposure to pesticides: methodology issues for the collection of comparable data. Environ Health Persp 11:923–928CrossRefGoogle Scholar
  16. Ascher KRS, Schmutterer H, Mazor M, Zebitz CPW, Naqvi SNH (2002) The Persian lilac or chinaberry tree: Melia azedarach L. Neem Found, Mumbai, pp 770–820Google Scholar
  17. Atkinson BL, Blackman AJ, Faber H (2004) The degradation of the natural pyrethrins in crop storage. J Agric Food Chem 52:280–287PubMedPubMedCentralCrossRefGoogle Scholar
  18. Auger J, Thibout E (2002) Substances soufrées des Allium et des Crucifères et leurs potentialités phytosanitaires. In: Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides d’Origine Végétale. Lavoisier Tech & Doc, Paris, pp 77–95Google Scholar
  19. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils. Food Chem Toxicol 46:446–475PubMedPubMedCentralCrossRefGoogle Scholar
  20. Belmain S, Stevenson P (2001) Ethnobotanicals in Ghana: reviving and modernizing age-old farmer practice. Pestic Outlook 12:233–338CrossRefGoogle Scholar
  21. Belmain SR, Neal GE, Ray DE, Golob P (2001) Insecticidal and vertebrate toxicity associated with ethnobotanicals used as post-harvest protectants in Ghana. Food Chem Toxicol 39:287–291PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bernays EA (1990) Plant secondary compounds deterrent but not toxic to the grass specialist acridid Locusta migratoria: implications for the evolution of graminivory. Entomol Exp Appl 54:53–56CrossRefGoogle Scholar
  23. Bernays EA (1991) Relationship between deterrence and toxicity of plant secondary compounds for the grasshopper Schistocerca americana. J Chem Ecol 17:2519–2526PubMedPubMedCentralCrossRefGoogle Scholar
  24. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systematic pesticide exposure reproduces features of Parkinson’s disease. Nature Neurosci 3:1301–1306PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bloomquist JR (1996) Ion channels as targets for insecticides. Ann Rev Entomol 41:163–190CrossRefGoogle Scholar
  26. Bloomquist JR (2003) Chloride channels as tools for developing selective insecticides. Arch Insect Biochem & Physiol 54:145–156CrossRefGoogle Scholar
  27. Bloomquist JR, Boina DR, Chow E, Carlier PR, Reina M, Gonzalez-Coloma A (2008) Mode of action of the plant-derived silphinenes on insect and mammalian GABAA receptor/chloride channel complex. Pestici Biochem & Physiol 91:17–23CrossRefGoogle Scholar
  28. Boeke SJ, Baumgart IR, van Loon JJA, van Huis A, Dicke M, Kossou DK (2004a) Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. J Stored Prod Res 40:423–438Google Scholar
  29. Boeke SJ, Kossou DK, van Huis A, van Loon JJA, Dicke M (2004b) Field trials with plant products to protect stored cowpea against insect damage. Int J Pest Manag 50:1–9Google Scholar
  30. Bomford MK, Isman MB (1996) Desensitization of fifth instar Spodoptera litura (Lepidoptera: Noctuidae) to azadirachtin and neem. Entomol Exp Appl 81:307–313CrossRefGoogle Scholar
  31. Bradbury SP, Coats JR (1989) Comparative toxicology of the pyrethroid insecticides. Rev Environ Contam Toxicol 108:134–177Google Scholar
  32. Brown AE (2005) Mode of action of insecticides and related pest control chemicals for production agriculture, ornamentals and turf. Pesticide Info Leaflet Nr 43:1–13. http://pesticide.umd.edu
  33. Buckle J (2003) Clinical aromatherapy: essential oils in practice. Churchill Livingstone, Edinburgh, p 416Google Scholar
  34. Bussaman P, Namsena P, Rattanasena P, Chandrapatya A (2012a) Effect of crude leaf extracts on Colletotrichum gloeosporioides (Penz.) Sacc. Psyche, Article ID 309046, pp 1–6. doi:10.1155/2012/309046Google Scholar
  35. Bussaman P, Sa-uth C, Rattanasena P, Chandrapatya A (2012b) Effect of crude plant extracts on Mushroom Mite, Luciaphorus sp. (Acari: Pygmephoridae). Psyche, Article ID 150958, pp 1–5. doi:10.1155/2012/150958Google Scholar
  36. Buta JG, Lusby WR, Neal JW Jr, Waters RM, Piuarelli GW (1993) Sucrose esters from Nicotiana gossei active against the greenhouse whitefly, Ttialeurodes vaporatiorwll. Phytochemistry 22:859–864CrossRefGoogle Scholar
  37. Cabizza M, Angioni A, Melis M, Cabras M, Tuberoso CV, Cabras P (2004) Rotenone and rotenoids in cubé resins, formulations, and residues on olives. J Agric Food Chem 52:288–293PubMedPubMedCentralCrossRefGoogle Scholar
  38. Caboni P, Cabras M, Angioni A, Russo M, Cabras P (2002) Persistence of azadirachtin residues on olives after field treatment. J Agric Food Chem 50:3491–3494PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cabras P, Caboni P, Cabras M, Angioni A, Russo M (2002) Rotenone residues on olives and in olive oil. J Agric Food Chem 50:2576–2580PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cagen SZ, Malley LA, Parker CM, Cardiner TH, van Gelder GA, Jud VA (1984) Pyrethroid-mediated skin sensory stimulation characterized by a new behavioral paradigm. Toxicol Appl Pharmacol 76:270–279PubMedPubMedCentralCrossRefGoogle Scholar
  41. Carpinella MC, Defago MT, Valladares G, Palacios SM (2003) Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J Agric Food Chem 51:369–374PubMedPubMedCentralCrossRefGoogle Scholar
  42. Casanova H, Ortiz C, Pel’aez C, Vallejo A, Moreno ME, Acevedo M (2002) Insecticide formulations based on nicotine oleate stabilized by sodium caseinate. J Agric Food Chem 50:6389–6394PubMedPubMedCentralCrossRefGoogle Scholar
  43. Casida JE (1973) Pyrethrum the natural insecticide. Academic Press, New York, p 329Google Scholar
  44. Casida JE, Quistad GB (1995) Pyrethrum flowers: production, chemistry, toxicology and uses. Oxford Univ Press, Oxford, p 356Google Scholar
  45. CDPR (California Department of Pesticide Regulation) (2005) Summary of pesticide use report data 2003, indexed by chemical. http://www.cdpr.ca.gov/ (Accessed: 25 March 2013)
  46. Céspedes CL, Calderón JS, Lina L, Aranda E (2000) Growth inhibitory effects on fall armyworm Spodoptera frugiperda of some limonoids isolated from Cedrela spp (Meliaceae). J Agric Food Chem 48:1903–1908PubMedPubMedCentralCrossRefGoogle Scholar
  47. Céspedes CL, Avila JG, Marin JC, Domínguez ML, Torres P, Aranda E (2006) Natural compounds as antioxidant and molting inhibitors can play a role as a model for search of new botanical pesticides, Rai and Carpinella (eds) Naturally Occurring Bioactive Compounds, ISBN-13:978–0-444-52241-2, Chapter 1:1–27Google Scholar
  48. Charleston DS (2004) Integrating biological control and botanical pesticides for management of Plutella xylostella. PhD Thesis Wageningen Univ, p 176Google Scholar
  49. Chen W, Isman MB, Chiu SF (1995) Antifeedant and growth inhibitory effects of the limonoid toosendanin and Melia toosendan extracts on the variegated cutworm, Peridroma saucia (Lep., Noctuidae). J Appl Entomol 119:367–370CrossRefGoogle Scholar
  50. Childs FJ, Chamberlain JR, Antwi EA et al (2001) Improvement of neem and its potential benefits to poor farmers. Dept of Internat Develop, UK, p 32Google Scholar
  51. Chiu SF (1988) Recent advances in research on botanical insecticides in China. In: Arnason AT, Philogène BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society, Washington, DC. pp 69–77Google Scholar
  52. Coats JR (1990) Mechanisms of toxic action and structure-activity relationships for organochlorine and synthetic pyrethroid insecticides. Environ Health Perspect 87:255–262PubMedPubMedCentralCrossRefGoogle Scholar
  53. Coats JR (1994) Risks from natural versus synthetic insecticides. Annu Rev Entomol 39:489–515PubMedPubMedCentralCrossRefGoogle Scholar
  54. Coats JR, Symonik DM, Bradbury SP, Dyer SD, Timson LK, Atchison GJ (1989) Toxicology of synthetic pyrethroids in aquatic organisms: an overview. Environ Toxicol Chem 8:671–679CrossRefGoogle Scholar
  55. Coats JR, Karr LL, Drewes CD (1991) Toxicity and neurotoxic e!ects of monoterpenoids in insects and earthworms. Am Chem Soc Symp Ser 449:306–316Google Scholar
  56. Coppen JJW (1995) Flavours and fragrances of plant origin. Food and Agriculture Organization, Rome, p 101Google Scholar
  57. Copping LG (2001) The biopesticide manual, 2nd edn. British Crop Protection Council, Farnham, p 528Google Scholar
  58. Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676CrossRefGoogle Scholar
  59. Davies IH (1985) The pyrethroids: an historical introduction. In: Leahey JP (ed) The pyrethroid insecticides. Taylor and Francis, Philadelphia, p 440Google Scholar
  60. Delaplane KS (1992) Controlling tracheal mites (Acari: Tarsonemidae) in colonies of honey bees (Apidae) with vegetable oil and menthol. J Econ Entomol 85:2118–2124CrossRefGoogle Scholar
  61. Deng AL, Ogendo JO, Owuor G, Bett PK, Omolo EO, Mugisha-Kamatenesi M, Mihale JM (2009) Factors determining the use of botanical insect pest control methods by small-holder farmers in the Lake Victoria basin, Kenya. African J Environ Sci & Technol 3:108–115Google Scholar
  62. Dev S, Koul O (1997) Insecticides of natural origin. Harwood Acad, Amsterdam, p 365Google Scholar
  63. Dimetry NZ (2012) Prospects of botanical pesticides for the future in integrated pest management programme (IPM) with special reference to neem uses in Egypt. Arch Phytopathol & Plant Prot 45:1138–1161CrossRefGoogle Scholar
  64. Dimetry NZ, El-Hawary FMA (1997) Synergistic effect of some additives on the biological activity and toxicity of Neem-based formulations against the cowpea aphid, Aphis craccivora Koch. Internat J Tropical Insect Sci 17:395–399CrossRefGoogle Scholar
  65. Dimetry NZ, Amer SAA, Reda AS (1993) Biological activity of 2 Neem seed kernel extracts against the 2-spotted spider mite Tetranychus urticae. J Appl Entomol 116: 308–312CrossRefGoogle Scholar
  66. Dimetry NZ, Abd El-Salam AME, El-Hawary FMA (2010) Importance of plant extract formulations in managing different pests attacking beans in new reclaimed area and under storage conditions. Arch Phytopathol & Plant Prot 43:700–711CrossRefGoogle Scholar
  67. Dosemeci M, Alavanja MC, Rowland AS, Mage D, Zahm SH, Rothman N, Lubin JH, Hoppin JA, Sandler DP, Blair A (2002) A quantitative approach for estimating exposure to pesticides in the agricultural health study. Ann Occup Hyp 46:245–260Google Scholar
  68. El-Sayed EI (1982–1983a) Evaluation of the insecticidal properties of the common Indian neem (Azadirachta Indica A Juss) seeds against the Egyptian cotton leaf worm (Spodoptera litoralis) (Boisd.). Bull Entomol Soc Egypt, Econ Ser 13:39–47Google Scholar
  69. El-Sayed EI (1982–1983b) Neem (Azadirachta indica A. Juss) seeds as antifeedant and ovipositional repellent for the Egyptian cotton leafworm Spodoptera littoralis (Boisd.). Bull Entomol Soc Egypt, Econ Ser 13:49–58Google Scholar
  70. El-Hawary FMA, Sammour EA (2006) The bioactivity and mechanism of action of some wild plant extracts on Aphis craccivora. Bull NRC, Egypt 31:545–556Google Scholar
  71. El-Hosary RA (2011) Evaluation of some essential oils against Sesamia cretica Led. under field conditions. J Am Sci 7:563–568Google Scholar
  72. El-Sebai TN, El-Wakeil NE, Abdallah SA (2005) Efficacy of certain mineral, natural oils and insecticides against the Whitefly, Bemisia tabaci on cucumber plants and their side effects on the associated predators. Bull Entomol Soc Egypt, Econ Ser 31:229–241Google Scholar
  73. El-Shazly AM, Dora G, Wink M (2005) Alkaloids of Haloxylon salicornicum (Moq.) Bunge ex Boiss. (Chenopodiaceae). Pharmazie 60:949–952PubMedPubMedCentralGoogle Scholar
  74. El-Wakeil NE, Gaafar N, Vidal S (2006) Side effect of some neem products on natural enemies of Helicoverpa, Trichogramma spp. And Chrysoperla carnea. Archiv Phytopathol & Plant Prot 39:445–455CrossRefGoogle Scholar
  75. El-Wakeil N, Gaafar N, Sallam A, Volkmar C (2013) Side effects of insecticide applications on natural enemies and possibility of integration in plant protection strategies. Published in book “Insecticides: development of safer and more effective technologies” (ISBN 978-953-51-0958-7) Intech Open Access Publisher, pp 3–56Google Scholar
  76. Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol 130C:325–337Google Scholar
  77. Enan EE (2005a) Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem & Physiol 59:161–171Google Scholar
  78. Enan EE (2005b) Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem & Molec Biol 35:309–321Google Scholar
  79. Fang N, Casida J (1998) Anticancer action of cubè insecticide: correlation for rotenoid constituents between inhibition of NADH-ubiquinone oxidoreductase and induced ornithine decarboxylase activities. Proc. Natl Acad Sci USA 95:3380–3384CrossRefGoogle Scholar
  80. Farone WA, Palmer T, Puterka J (2002) Polyol ester insecticides and method of synthesis. U.S. Patent 6,419,941Google Scholar
  81. Feng R, Chen W, Isman MB (1995) Synergism of malathion and inhibition of midgut esterase activities by an extract from Melia Toosendan (Meliaceae). Pestic Biochem Physiol 53:34–41CrossRefGoogle Scholar
  82. Fields PG, Xie YS, Hou X (2001) Repellent effect of pea (Pisum sativum) fractions against stored-product pests. J Stored Prod Res 37:359–370PubMedPubMedCentralCrossRefGoogle Scholar
  83. Floris I, Satta A, Cabras P, Garau VL, Angioni A (2004) Comparison between two thymol formulations in the control of Varroa destructor: effectiveness, persistence and residues. J Econ Entomol 97:187–191PubMedPubMedCentralCrossRefGoogle Scholar
  84. Forget G, Goodman T, de Villiers A (eds) (1993) Impact of pesticide use on health in developing countries. Int Dev Res Centre, Ottawa p 335Google Scholar
  85. Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bites. N Engl J Med 347:13–18PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gilkeson LA, Adams RW (2000) Integrated pest management manual for landscape pests in British Columbia. Province of British Columbia Press, p 130Google Scholar
  87. Glynne-Jones A (2001) Pyrethrum. Pestic Outlook 12:195–198CrossRefGoogle Scholar
  88. Gonzalez-Coloma A, Valencia F, Martin N, Hoffmann JJ, Hutter L et al (2002) Silphinene sesquiterpenes as model insect antifeedants. J Chem Ecol 28:117–129PubMedPubMedCentralCrossRefGoogle Scholar
  89. Grundy DL, Still CC (1985) Inhibition of acetylcholinesterases by pulegone1, 2- epoxide. Pestici Biochem & Physiol 23:383–388CrossRefGoogle Scholar
  90. Guerrero A, Rosell G (2004) Enzyme inhibitors in biorational approaches for pest control. Mini-Rev Med Chem 4:757–767PubMedPubMedCentralGoogle Scholar
  91. Guerrero A, Rosell G (2005) Biorational approaches for insect control by enzymatic inhibition. Curr Med Chem 12:461–469PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hayes WJ Jr (1982) Pesticides studied in man. Williams & Wilkins, Baltimore, p 672Google Scholar
  93. Haynes KF (1988) Sublethal effects of neurotoxic insecticides on insect behaviour. Ann Rev Entomol 33:149–168CrossRefGoogle Scholar
  94. Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson DG (eds) (1997) Phytochemicals for pest control. American Chemical Society, Washington, DC, p 372CrossRefGoogle Scholar
  95. Henk PM, Vijverberg JM, Van Der Zalm, Van Den Bercken J (1982) Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves. Nature 295:601–603. doi:10.1038/295601a0CrossRefGoogle Scholar
  96. Henn T, Weinzierl R, Gray M, Steffey K (1991) Alternatives in insect management: field and forage crops. Cooperative extension service, University of Illinois at Urbana-Champaign, Circ. 1307Google Scholar
  97. Hollingworth R, Ahmmadsahib K, Gedelhak G, McLaughlin J (1994) Newinhibitors of complex I of the mitochondrial electron transport chain with activity as pesticides. Biochem Soc Trans 22:230–233PubMedPubMedCentralCrossRefGoogle Scholar
  98. Hussein HI (2005) Composition of essential oils isolated from three plant species and their molluscicidal activity against Theba pisana snails. J Pest Cont Environ Sci 13:15–24Google Scholar
  99. Immaraju JA (1998) The commercial use of azadirachtin and its integration into viable pest control programmes. Pestic Sci 54:285–289CrossRefGoogle Scholar
  100. Ismail AI, Abd El-Salam AME, Soliman MMM (2004) Field evaluation of plant derivative and chemical compounds and their mixtures against Ceroplastes floridensis Com. on orange trees. Egypt J Biol Pest Control 14:175–179Google Scholar
  101. Isman MB (1993) Growth inhibitory and antifeedant effects of azadirachtin on six noctuids of regional economic importance. Pestic Sci 38:57–63CrossRefGoogle Scholar
  102. Isman MB (1997) Neem and other botanical insecticides: barriers to commercialization. Phytoparasitica 25:339–344CrossRefGoogle Scholar
  103. Isman MB (1999) Pesticides based on plant essential oils. Pestic Outlook 10:68–72Google Scholar
  104. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608CrossRefGoogle Scholar
  105. Isman MB (2002) Insect antifeedants. Pestic Outlook 13:152–157CrossRefGoogle Scholar
  106. Isman MB (2004) Factors limiting commercial success of neem insecticides in North America and Western Europe. In: Koul O, Wahab S (eds) Neem: today and in the new millennium. Kluwer Acad, Dordrecht, p 33–41CrossRefGoogle Scholar
  107. Isman MB (2005) Problems and opportunities for the commercialization of botanical insecticides. In Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides of plant origin. Lavoisier, Paris, pp 283–291Google Scholar
  108. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66PubMedPubMedCentralCrossRefGoogle Scholar
  109. Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64:8–11PubMedPubMedCentralCrossRefGoogle Scholar
  110. Isman MB, Matsuura H, MacKinnon S, Durst T, Towers GHN, Arnason JT (1996) Phytochemistry of the Meliaceae. So many terpenoids, so few insecticides. In: Romeo JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy. Plenum, New York, pp 155–178CrossRefGoogle Scholar
  111. Jacobson M (ed) (1989) Focus on phytochemical pesticides, vol 1: the neem tree. CRC Press, Boca Raton, p 178Google Scholar
  112. Johnson HA, Oberlies NH, Alali FQ, McLaughlin JE (2000) Thwarting resistance: annonaceous acetogenins as new pesticidal and antitumor agents. In Cutler SJ, Cutler JG (eds) Biological active natural products: pharmaceuticals. Boca Raton, CRC Press, pp 173–83Google Scholar
  113. Jayasekara TK, Stevenson PC, Hall DR, Belmain SR (2005) Effect of volatile constituents from Securidaca longepedunculata on insect pests of stored grain. J Chem Ecol 31:303–313PubMedPubMedCentralCrossRefGoogle Scholar
  114. Katz J, Prescott K, Woolf AD (1996) Strychnine poisoning from a Cambodian traditional remedy. Am J Emerg Med 14:475–477PubMedPubMedCentralCrossRefGoogle Scholar
  115. Keane S, Ryan MF (1999) Purification, characterisation and inhibition of monoterpenes of acetylcholonesterase from the waxmoth, Galleria melonella. Insect Biochem & Molec Biol 29:1097–1104CrossRefGoogle Scholar
  116. Khambay BP, Batty D, Jewess PJ, Bateman GL, Hollomon DW (2003) Mode of action and pesticidal activity of the natural product dunnione and of some analogues. Pest Manag Sci 59:174–182PubMedPubMedCentralCrossRefGoogle Scholar
  117. Khater HF (2012) Ecosmart biorational insecticides: alternative insect control strategies, insecticides- advances in integrated pest management, ed F Perveen, ISBN: 978-953-307-780-2, InTech publisher, pp 17–60Google Scholar
  118. Klein Gebbinck EA, Jansen BJM, de Groot A (2002) Insect antifeedant activity of clerodane dieterpenes and related model compounds. Phytochemistry 61:737–770PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 58:1101–1106PubMedPubMedCentralCrossRefGoogle Scholar
  120. Koul O, Dhaliwal GS (2001) Phytochemical biopesticides. Harwood Acad, Amster, p 223Google Scholar
  121. Kraus W (2002) Azadirachtin and other triterpenoids. Neem Found, Mumbai, pp 39–111Google Scholar
  122. Kubo I (2000) Tyrosinase inhibitors from plants. Rev Latinoamer Quim 28:7–20Google Scholar
  123. Kukel CF, Jennings KR (1994) Delphinium alkaloids as inhibitors of alpha-bungarotoxin binding to rat and insect neural membranes. Can J Physiol & Pharmacol 72:104–107CrossRefGoogle Scholar
  124. Kurita N, Miyaji M, Kurane R, Takahara Y (1981) Antifungal activity of components of essential oils. Agric Biol Chem 45:945–952Google Scholar
  125. Leatemia JA, Isman MB (2004a) Efficacy of crude seed extracts of Annona squamosa against Plutella xylostella L. in the greenhouse. Int J Pest Manag 50:129–133Google Scholar
  126. Leatemia JA, Isman MB (2004b) Insecticidal activity of crude seed extracts of Annona spp., Lansium domesticum and Sandoricum koetjape against lepidopteran larvae. Phytoparasitica 32:30–37Google Scholar
  127. Lewis MA, Arnason JT, Philogene, BJR, Rupprecht JK, Mclaughlin JL (1993) Inhibition of respiration at site I by Asimicin, an insecticidal Acetogenin of the Pawpaw, Asimina triloba (Annonaceae). Pestic Biochem & Physiol 45:15–23CrossRefGoogle Scholar
  128. Londershausen M, Leight W, Lieb F, Moeschler H (1991) Molecular mode of action of annonins. Pestic Sci 33:427–438CrossRefGoogle Scholar
  129. Lowery DT, Isman MB (1995) Toxicity of neem to natural enemies of aphids. Phytoparasitica 23:297–306CrossRefGoogle Scholar
  130. Maistrello L, Henderson G, Laine RA (2004) Efficacy of vetiver oil and nootkatone as soil barriers against Formosan subterranean termite. J Econ Entomol 94:1532–1537CrossRefGoogle Scholar
  131. Marco GJ, Hollingworth RM, Durham W (eds) (1987) Silent Spring Revisited. American Chemical Society, Washington, DC, p 214Google Scholar
  132. Matsuzaki T, Shinozaki Y, Suhara S, Tobita T, Shigematsu H, Koiwai A (1991) Leaf surface glycolipids from Nicotiana acuminate & Nicotiana pauciflora. Agric Biol Chem 55:1417–1419Google Scholar
  133. McLaughlin GA (1973) History of pyrethrum. Academic, New York, pp 3–15Google Scholar
  134. McLaughlin JL, Zeng L, Oberlies NJ, Alfonso D, Johnson JA, Cummings BA (1997) Annonaceous acetogenins as new natural pesticides: recent progress. Washington, DC Am Chem Soc, pp 117–133Google Scholar
  135. Mikolajczak KL, McLaughlin JL, Rupprecht JK (1988) Control of Pests with Annonaceous Acetogenins. (divisional patent on asimicin) U.S. Patent No. 4,855,319Google Scholar
  136. Miyazawa M, Watanabe H, Kameoka H (1997) Inhibition of acetylcholinesterase activity by monoterpenoids with a pmenthane skeleton. J Agric & Food Chem 45:677–679CrossRefGoogle Scholar
  137. Moeschler HF, Pfuger W, Wendlisch D (1987) Pure annonin and a process for the preparation thereof. U.S. Patent No. 4,689,323Google Scholar
  138. Morse S, Ward A, McNamara N, Denholm I (2002) Exploring the factors that influence the uptake of botanical insecticides by farmers: a case study of tobacco-based products in Nigeria. Exp Agric 38:469–479CrossRefGoogle Scholar
  139. Narahashi T (1976) Effects of insecticides on nervous conduction and synaptic transmission Editor(s): Wilkinson, Christopher Foster. Insectic Biochem Physiol pp 327–352 nPublisher: Plenum, New York, NY CODEN: 34LXAP; EnglishGoogle Scholar
  140. Nathanson JA, Hunnicutt EJ, Kantham L, Scavon C (1993) Cocaine as a naturally occurring insecticide. Proc National Acad Sci USA 90:9645–9648CrossRefGoogle Scholar
  141. National Research Council (1992) Neem. A tree for solving global problems. National Academy Press, Washington, DC, p 141Google Scholar
  142. National Research Council (2000) The future role of pesticides in US Agriculture. National Academy Press, Washington, DC, p 301Google Scholar
  143. Naumann K, Isman MB (1996) Toxicity of neem (Azadirachta indica A. uss) seed extracts to larval honeybees and estimation of dangers from field applications. Am Bee J 136:518–520Google Scholar
  144. Ngoh SP, Hoo L, Pang FY, Huang Y, Kini MR, Ho SH (1998) Insecticidal and repellent properties of nine volatile constituents of essential oils against the American cockroach. Periplaneta Americana (L.). Pestic Sci 54:261–268CrossRefGoogle Scholar
  145. Okuna Y, Sen T, Ito S, Kaneko H, Watanabe T et al (1986) Differential metabolism of fenvalerate and granuloma fonnation. II. Toxicological significance of a lipophilic conjugate from fenvalerate. Toxicol Appl Pharmacol 83:157–169CrossRefGoogle Scholar
  146. Pavela R, Vrchotová N, Šerá B (2008) Growth inhibitory effect of extracts from Reynoutria sp. plants against Spodoptera littoralis larvae. Agrociencia 42:573–584Google Scholar
  147. Perry AS, Yamamoto I, Ishaaya I, Perry RY (1998) Insecticides in Agriculture and Environment: Retrospects and Prospects. Springer-Verlag, Berlin, p 261CrossRefGoogle Scholar
  148. Pesticide Action Network (2004) Pesticide registration by country. http://www. pesticideinfo.org/SearchCountries.jsp (Accessed: 15 April 2013)
  149. Peterson C, Coats J (2001) Insect repellents past, present and future. Pestic Outlook 12:154–158CrossRefGoogle Scholar
  150. Philogène BJR, Arnason JT, Towers GHN, Abramowski Z, Campos F, Champagne D, McLachlan D (1984) Berberine: a naturally occurring phototoxic alkaloid. J Chem Ecol 10:115–123PubMedPubMedCentralCrossRefGoogle Scholar
  151. Philogène BJR, Regnault-Roger C, Vincent C (2005) Botanicals: yesteday’s and today’s promises. In: Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides of plant origin. Lavoisier and Andover, UK, pp 1–15Google Scholar
  152. Pittarelli GW, Buta JG, Neal JW Jr, Lusby WR, Waters RM (1993) Biological pesticide derived from Nicotiana Plants. U.S. Patent No. 5,260,281Google Scholar
  153. Prakash A, Rao J (1997) Botanical pesticides in agriculture. CRC Press, Boca Raton, p 461Google Scholar
  154. Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140:1363–1372PubMedPubMedCentralCrossRefGoogle Scholar
  155. Quarles W (1996) EPA exempts least-toxic pesticides. IPM Pract 18:16–17Google Scholar
  156. Ratra GS, Casida JE (2001) GABA receptor subunit composition relative to insecticide potency and selectivity. Toxicol Letters 122:215–222CrossRefGoogle Scholar
  157. Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920CrossRefGoogle Scholar
  158. Regnault-Roger C, Philogène BJR (2008) Past and current prospects for the use of botanicals and plant allelochemicals in integrated pest management. Pharmac Biol 46:41–52CrossRefGoogle Scholar
  159. Regnault-Roger C, Hamraoui A, Holeman M, Théron E, Pinel R (1993) Insecticidal effect of essential oils from mediterranean plants upon A. obtectus Say (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). J Chem Ecol 19:1231–1242CrossRefGoogle Scholar
  160. Regnault-Roger C, Philogène BJR, Vincent C (eds) (2005) Biopesticides of plant origin. Lavoisier, Paris, p 313Google Scholar
  161. Rembold H, Mwangi R (2002) Melia volkensii Gürke. Neem Found, Mumbai, pp 827–32Google Scholar
  162. Rice PJ, Coats JR (1994) Insecticidal properties of monoterpenoid derivatives to the house fly (Muscidae) and red flour beetle (Tenebrionidae). Pestic Sci 41:195–202CrossRefGoogle Scholar
  163. Richards AG, Cutkomp LA (1945) Cholinesterase of insect nerves. J Cell Comp Physiol 26:57–61CrossRefGoogle Scholar
  164. Ryan MF, Byrne O (1988) Plant-insect coevolution and inhibition of acetylcholineesterase. J Chem Ecol 14:1965–1975PubMedPubMedCentralCrossRefGoogle Scholar
  165. Salama HS, Sharaby AM (1988) Feeding deterrence induced by some plants in Spodoptera littoralis and their potentiating effect on Bacillus thuringiensis Berliner. Internat J Tropical Insect Sci 9: 573–577CrossRefGoogle Scholar
  166. Salama HS, Wassel G, Saleh R (1970) Resistance of some varieties of Mangifera indica (L.) to scale insects infestation due to flavonoids. Curr Sci 39:497Google Scholar
  167. Sallam AA, Volkmar C, El-Wakeil NE (2009) Effectiveness of different bio–rational insecticides applied on wheat plants to control cereal aphids. J Plant Dis & Prot 116:283–287CrossRefGoogle Scholar
  168. Sallena RC (1989) Insecticides from neem. In: Amason IT, Phllogene BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society, Washington, DC, p 213Google Scholar
  169. Sammour EA, El-Hawary FM, Abdel-Aziz NF (2011) Comparative study on the efficacy of neemix and basil oil formulations on the cowpea aphid Aphis craccivora Koch. Arch Phytopathol & Plant Prot 44:655–670CrossRefGoogle Scholar
  170. Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297PubMedPubMedCentralCrossRefGoogle Scholar
  171. Schmutterer H (ed) (2002) The neem tree. Neem Found, Mumbai, p 892Google Scholar
  172. Sharaby AM (1988) Anti-insect properties of the essential oil of lemon grass, Cymbopogen citratus against Spodoptera exigua (Hbn). Internat J Trop Insect Sci 9:77–80CrossRefGoogle Scholar
  173. Shepard H (1951) The chemistry and action of insecticides. McGraw-Hill, New York, p 504Google Scholar
  174. Spollen KM, Isman MB (1996) Acute and sublethal effects of a neem insecticide on the commercial biocontrol agents Phytoseiulus persimilis and Amblyseius cucumeris and Aphidoletes aphidimyza. J Econ Entomol 89:1379–1386CrossRefGoogle Scholar
  175. Stroh J, Wan MT, Isman MB, Moul DJ (1998) Evaluation of the acute toxicity to juvenile Pacific coho salmon and rainbow trout of some plant essential oils, a formulated product, and the carrier. Bull Environ Contam Toxicol 60:923–930PubMedPubMedCentralCrossRefGoogle Scholar
  176. Tamayo MC, Rufat M, Bravo JM, San Segundo B (2000) Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta 211:62–71PubMedPubMedCentralCrossRefGoogle Scholar
  177. Tang JD, Gilboa S, Roush RT, Shelton AM (1997) Inheritance, stability and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) from Florida. J Econ Entomol 90:732–741CrossRefGoogle Scholar
  178. Thacker JMR (2002) An introduction to arthropod pest control. Cambridge University Press, Cambridge, p 343Google Scholar
  179. Thibout E, Auger J (1997) Composés soufrés des Allium et lutte contre les insectes. Acta Bot Gallica 144:419–426CrossRefGoogle Scholar
  180. Thibout E, Lecomte C, Auger J (1986) Substances soufrées des Allium et insectes. Acta Bot Gallica 143:137–142CrossRefGoogle Scholar
  181. Trumble JT (2002) Caveat emptor: safety considerations for natural products used in arthropod control. Am Entomol 48:7–13CrossRefGoogle Scholar
  182. Wan MT, Watts RG, Isman MB, Strub R (1996) An evaluation of the acute toxicity to juvenile Pacific northwest salmon of azadirachtin, neem extract and neem-based products. Bull Environ Contam Toxicol 56:432–439PubMedPubMedCentralCrossRefGoogle Scholar
  183. Ware GW (1983) Pesticides. Theory and application. Freeman, San Francisco, p 308Google Scholar
  184. Ware GW (1988) The pesticide book. Thomson Publication, USAGoogle Scholar
  185. Weinzierl RA (2000) Botanical insecticides, soaps, and oils. In: Rechcigl JE, Rechcigl NA (eds) Biological and biotechnological control of insect pests. Lewis Publishers, Boca Raton, pp 101–121Google Scholar
  186. Whittaker RH, Feeny P (1971) Allelochemicals: chemical interactions between species. Science 171:757–770PubMedPubMedCentralCrossRefGoogle Scholar
  187. Yamamoto C, Kurokawa M (1970) Synaptic potentials recorded in brain slices and their modification by changes in the level of tissue ATP. Exp Brain Res 10:159–170PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zhao JZ, Li YX, Collins HL, Gusukuma-Minuto L, Mau RFL et al (2002) Monitoring and characterization of diamondback moth resistance to spinosad. J Econ Ent 95:430–436CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Pests and Plant Protection DepartmentNational Research CentreDokki, CairoEgypt
  2. 2.Institute of Agricultural and Nutritional Sciences, Martin Luther-University Halle-WittenbergHalle-WittenbergGermany

Personalised recommendations