Skip to main content
Log in

Pflanzliche Immunität und ihre Anwendung im Pflanzenschutz

Plant immunity and its application in plant protection

  • Übersichtsartikel
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Zusammenfassung

Intensive Bemühungen um die Erforschung pflanzlicher Immunität (Resistenz) gegenüber Pflanzenkrankheiten haben zu einem tiefgehenden Verständnis davon geführt, wie Pflanzen Krankheitserreger erkennen und abwehren. Dieses Wissen steht heute zur Verfügung, um in Kulturpflanzen genetisch Pflanzenschutz zu betreiben, ohne auf xenobiotische Wirkmechanismen angewiesen zu sein. Dieser Artikel zeigt wichtige Erfolge der Forschung auf diesem Gebiet und aktuelle und zukünftige Möglichkeiten des biotechnologischen Pflanzenschutzes, die auf der natürlichen Immunität von Pflanzen beruhen.

Abstract

Intensive research on plant immunity revealed detailed knowledge on how plants recognize and defend plant pathogens. This knowledge is ready to use for genetic plant protection of crop plants, which does not rely on xenobiotic principals. Here, we report on important success in research on plant immunity and on recent and future possibilities of biotechnological plant protection that builds on intrinsic plant immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  • Altenbach D, Robatzek S (2007) Pattern recognition receptors: from the cell surface to intracellular dynamics. Mol Plant-Microbe Interact 209:1031–1039

    Article  Google Scholar 

  • Auer C, Frederick R (2009) Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol 27:644–651

    Article  PubMed  CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  PubMed  CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  PubMed  CAS  Google Scholar 

  • Brutus A, He SY (2010) Broad-spectrum defense against plant pathogens. Nat Biotechnol 28:330–331

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Collinge DB, Jørgensen HJ, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    Article  PubMed  CAS  Google Scholar 

  • Collmer A, Schneider DJ, Lindeberg M (2009) Lifestyles of the effector rich: genome-enabled characterization of bacterial plant pathogens. Plant Physiol 150:1623–1630

    Article  PubMed  CAS  Google Scholar 

  • de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MH, Thomma BP (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955

    Article  PubMed  Google Scholar 

  • Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    Article  PubMed  CAS  Google Scholar 

  • Eckardt NA (2002) Plant disease susceptibility genes? Plant Cell 14:1983–1986

    Article  PubMed  CAS  Google Scholar 

  • Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C, Schweizer P, Duchkov D, Hensel G, Kumlehn J, Hückelhoven R (2010) BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. Mol Plant-Microbe Interact 23:1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Fire A (1999) RNA-triggered gene silencing. Trends Genet 15:358–563

    Article  PubMed  CAS  Google Scholar 

  • Frizzi A, Huang S (2010) Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnol J 8:655–677

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Vanholme B (2007) RNAi from plants to nematodes. Trends Biotechnol 25:89–92

    Article  PubMed  CAS  Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  PubMed  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  PubMed  Google Scholar 

  • Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: what are we going to express? Trends Biotechnol 23:275–282

    Article  PubMed  CAS  Google Scholar 

  • Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21:204–210

    Article  PubMed  CAS  Google Scholar 

  • Han F, Kleinhofs A, Kiulian A, Ullrich SE (1997) Cloning and mapping of a putative barley NADPH-dependent HC-toxin reductase. Mol Plant-Microbe Interact 10:234–239

    Article  PubMed  CAS  Google Scholar 

  • Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AM, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JI, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J, Grünwald NJ, Horn K, Horner NR, Hu CH, Huitema E, Jeong DH, Jones AM, Jones JD, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC, McDonald H, McWalters J, Meijer HJ, Morgan W, Morris PF, Munro CA, O’Neill K, Ospina-Giraldo M, Pinzón A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwessinger B, Seyer L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJ, Phuntumart V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, van West P, Ristaino J, Govers F, Birch PR, Whisson SC, Judelson HS, Nusbaum C (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    Article  PubMed  CAS  Google Scholar 

  • Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165:71–82

    Article  PubMed  CAS  Google Scholar 

  • Hermsen JGT, Ramanna MS (1969) Meiosis in different Fl-hybrids of Solanum acaule × S. bulbocastanum DUN. and its bearing on genome relationship, fertility and breeding behaviour. Euphytica 18:27–35

    Google Scholar 

  • Hermsen JGT, Ramanna MS (1973) Double-bridge hybrids of Solanum bulbocastanum and cultivars of Solanum tuberosum. Euphytica 22:457–466

    Article  Google Scholar 

  • Hok S, Attard A, Keller H (2010) Getting the most from the host: how pathogens force plants to cooperate in disease. Mol Plant-Microbe Interact 23:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103:14302–14306

    Article  PubMed  CAS  Google Scholar 

  • Hückelhoven R (2005) Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiol Lett 245:9–17

    Article  PubMed  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987

    Article  PubMed  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen JH (1977) Spectrum of resistance conferred by Mlo powdery mildew resistance genes in barley. Euphytica 26:55–62

    Article  Google Scholar 

  • Jørgensen JH (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13:97–119

    Article  Google Scholar 

  • Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41–60

    Article  PubMed  CAS  Google Scholar 

  • Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–651

    Article  PubMed  CAS  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    Article  PubMed  CAS  Google Scholar 

  • Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BP, Staskawicz B, Jones JD, Zipfel C (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369

    Article  PubMed  CAS  Google Scholar 

  • Laugé R, Joosten MHAJ, Van Den Ackerveken GFJM, Van den Broek HWJ, De Wit PJGM (1997) The in planta-produced extracellular proteins ECP1 and ECP2 of Cladosporium fulvum are virulence factors. Mol Plant-Microbe Interact 10:725–734

    Article  Google Scholar 

  • Meeley RB, Walton JD (1991) Enzymatic detoxification of HC-toxin, the host-selective cyclic peptide from Cochliobolus carbonum. Plant Physiol 97:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Mersmann S, Salomon S, Vetter M, Robatzek S (2010) Selbst oder Nicht-Selbst – die Rezeptoren des pflanzlichen Immunsystems Kontinuierliche Anpassungen führt zu einem Wettrüsten zwischen Pflanze und Erreger. Gesunde Pflanzen 62:95–99

    Article  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618

    Article  PubMed  CAS  Google Scholar 

  • Multani DS, Meeley RB, Paterson AH, Gray J, Briggs SP, Johal GS (1998) Plant-pathogen microevolution: molecular basis for the origin of a fungal disease in maize. Proc Natl Acad Sci U S A 95:1686–1691

    Article  PubMed  CAS  Google Scholar 

  • Niederhauser JS, Mills WR (1953) Resistance of Solanum species to Phytophthora infestans in Mexico. Phytopathology 43:456–457

    Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  PubMed  CAS  Google Scholar 

  • Oh SK, Young C, Lee M, Oliva R, Bozkurt TO, Cano LM, Win J, Bos JI, Liu HY, van Damme M, Morgan W, Choi D, Van der Vossen EA, Vleeshouwers VG, Kamoun S (2009) In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. Plant Cell 21:2928–2947

    Article  PubMed  CAS  Google Scholar 

  • Panstruga R (2005) Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochem Soc Trans 33:389–392

    Article  PubMed  CAS  Google Scholar 

  • Panstruga R, Schulze-Lefert P (2003) Corruption of host seven-transmembrane proteins by pathogenic microbes: a common theme in animals and plants? Microbes Infect 5:429–437

    Article  PubMed  CAS  Google Scholar 

  • Pathuri IP, Zellerhoff N, Schaffrath U, Hensel G, Kumlehn J, Kogel KH, Eichmann R, Hückelhoven R (2008) Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens. Plant Cell Rep 27:1877–1887

    Article  PubMed  CAS  Google Scholar 

  • Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911

    Article  PubMed  CAS  Google Scholar 

  • Postel S, Kemmerling B (2009) Plant systems for recognition of pathogen-associated molecular patterns. Semin Cell Dev Biol 20:1025–1031

    Article  PubMed  CAS  Google Scholar 

  • Römer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645–648

    Article  PubMed  Google Scholar 

  • Römer P, Recht S, Lahaye T (2009) A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proc Natl Acad Sci U S A 106:20526–20531

    Article  PubMed  Google Scholar 

  • Schornack S, Huitema E, Cano LM, Bozkurt TO, Oliva R, Van Damme M, Schwizer S, Raffaele S, Chaparro-Garcia A, Farrer R, Segretin ME, Bos J, Haas BJ, Zody MC, Nusbaum C, Win J, Thines M, Kamoun S (2009) Ten things to know about oomycete effectors. Mol Plant Pathol 10:795–803

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Hückelhoven R (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol 128:1447–1454

    Article  PubMed  CAS  Google Scholar 

  • Sindhu A, Chintamanani S, Brandt AS, Zanis M, Scofield SR, Johal GS (2008) A guardian of grasses: specific origin and conservation of a unique disease-resistance gene in the grass lineage. Proc Natl Acad Sci U S A 105:1762–1767

    Article  PubMed  CAS  Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci U S A 100:9128–9133

    Article  PubMed  CAS  Google Scholar 

  • Spanu P, Kämper J (2010) Genomics of biotrophy in fungi and oomycetes - emerging patterns. Curr Opin Plant Biol 13:409–414

    Article  PubMed  CAS  Google Scholar 

  • Stergiopoulos I, Van Den Burg HA, Okmen B, Beenen HG, van Liere S, Kema GH, de Wit PJ (2010) Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc Natl Acad Sci U S A 107:7610–7615

    Article  PubMed  CAS  Google Scholar 

  • Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci U S A 96:14153–14158

    Article  PubMed  CAS  Google Scholar 

  • Thomma BP, van Esse HP, Crous PW, de Wit PJ (2005) Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol 6:379–393

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H (2003) Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol 6:351–357

    Article  PubMed  CAS  Google Scholar 

  • Van Den Burg HA, Harrison SJ, Joosten MH, Vervoort J, de Wit PJ (2006) Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant-Microbe Interact 19:1420–1430

    Article  PubMed  Google Scholar 

  • van Der Vossen E, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882

    Article  PubMed  Google Scholar 

  • van Der Vossen EA, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222

    Article  PubMed  Google Scholar 

  • Vleeshouwers VG, Rietman H, Krenek P, Champouret N, Young C, Oh SK, Wang M, Bouwmeester K, Vosman B, Visser RG, Jacobsen E, Govers F, Kamoun S, Van der Vossen EA (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 3:e2875

    Article  PubMed  Google Scholar 

  • Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Hückelhoven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichmann, R., Hückelhoven, R. Pflanzliche Immunität und ihre Anwendung im Pflanzenschutz. Gesunde Pflanzen 63, 1–9 (2011). https://doi.org/10.1007/s10343-011-0242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-011-0242-1

Schlüsselwörter

Keywords

Navigation