Skip to main content
Log in

Pflanzenakklimatisation an Temperatur- und Lichtbedingungen in Innenräumen

Plant acclimatization to indoor temperatures and light intensities

  • Orginalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Zusammenfassung

Ziel der Untersuchungen war es, die Auswirkungen verschiedener Temperatur- und Strahlungsbedingungen während der Akklimatisationsphase auf das anschließende Wachstum von Ficus benjamina und Schefflera arboricola im Innenraum zu ermitteln. Beide Pflanzenarten wurden sechs Monate Temperaturen von 15, 20 und 25°C kombiniert mit verschiedenen Photonenstromdichten (PFD; F. benjamina bei 40, 80 und 180 µmol m−2s−1 und S. arboricola bei 10, 20 und 80 µmol m−2s−1) ausgesetzt. Nach der Akklimatisationsphase wuchsen die Pflanzen sechs Monate unter Innenraumbedingungen bei 18 µmol m−2s−1 PFD sowie 20°C bei Belichtung und 18°C bei Dunkelheit. Während der Akklimatisationsphase führte bei F. benjamina die Kombination von 15°C und 180 µmol m−2s−1 PFD zu einer geringen Blattbildung, nicht voll entwickelten Internodien sowie zu aufgehellten Blättern ohne sortentypischen Blattglanz. Das Pflanzenwachstum von F. benjamina und S. arboricola im Innenraum wurde durch die gewählten Akklimatisationsbedingungen positiv beeinflusst. Nach dem Überführen der Pflanzen in den Innenraum traten bei keiner untersuchten Temperatur- und Strahlungsbehandlung Wachstumsdepressionen, Schädlingsbefall oder starker Blattfall auf. Nach sechs Monaten Wachstum im Innenraum hatten sich bei beiden Pflanzenarten die untersuchten Merkmale unabhängig von den Akklimatisationsbedingungen annähernd gleich entwickelt.

Abstract

The present study examined the effects of temperature and light regimes as a means to acclimatize Ficus benjamina and Schefflera arboricola prior to plants being placed in a standard, interior environment. Plants were exposed for six months to temperatures of 15, 20 and 25°C combined with different photon flux densities (PFD; F. benjamina at 40, 80 and 180 µmol m−2s−1 und S. arboricola at 10, 20 und 80 µmol m−2s−1). After treatments, plants were placed in an interior environment at 18 µmol m−2s−1 PFD and 20°C and growth measured. During the acclimatization phase the combination of 15°C and 180 µmol m−2s−1 is critical because leaf number is reduced and leaves were uncharacteristically light green without the typical leaf shine. Temperature and PFD treatments during the acclimatization phase had influenced subsequent growth of F. benjamina and S. arboricola indoors. After six month indoors, growth characteristics were nearly identical among acclimatization treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  • Anderson PC, Knox GW, Norcini JG (1991) Light intensity influences growth and leaf physiology of Aucuba japonica ‚Variegata’. Hort Sci 26 (12): 1485–1488

    Google Scholar 

  • Armitage AM, Carlson WH, Flore JA (1981) The effect of temperature and quantum flux density on the morphology, physiology, and flowering of hybrid geraniums. J Am Soc Horti Sci 106: 643–647

    Google Scholar 

  • Björkman O, Holmgren P (1966) Photosynthetic adaption to light intensity in plants native to shaded and exposed habitats. Phys Plant 19: 854–889

    Google Scholar 

  • Björkman O (1980) Responses and adaption of photosynthesis to high temperatures. In: Turner C, Kramer PJ (Hrsg) Adaptions of plants to water and high temperature stress. Wiley Intersci, New York, pp 233–249

  • Boardman NK (1977) Comperative photosynthesis of sun and shade plants. Annu Rev Plant Phys Plant Mol Biol 28: 355–377

    Google Scholar 

  • Chen J, McConnell DB, Henny RJ, Everitt KC (2003) Cultural guidelines for commercial production of interiorscape Ficus. Dokument ENH879 der Serie des Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, http://edis.ifas.ufl.edu [05.01.2005]

  • Collard RC, Joiner JN, Conover CA, McConnell DB (1977) Influence of shade and fertilizer on light compensation point of Ficus benjamina L. J Am Soc Horti Sci 102 (4): 447–449

    CAS  Google Scholar 

  • Collins B, Wein G (2000) Stem elongation response to neighbour shade in sprawling and upright Polygonum species. Ann Bot 86 (4): 739–744

    Article  Google Scholar 

  • Conover CA, Poole RT (1977) Effects of cultural practices on acclimatization of Ficus benjamina L. J Am Soc Horti Sci 102 (5): 529–531

    CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecol 78: 9–19

    Article  Google Scholar 

  • Fails BS, Lewis AJ, Barden JA (1982) Anatomy and morphology of sun- and shade-grown Ficus benjamina. J Am Soc Horti Sci 107 (5): 754–757

    Google Scholar 

  • Fonteno WC, McWilliams EL (1978) Light compensation points and acclimatization of four tropical foliage plants. J Am Soc Horti Sci 103 (1): 52–56

    CAS  Google Scholar 

  • Gianoli E (2003) Phenotypic responses of the twining vine Ipomoea purpurea (Convolvulaceae) to physical support availability in sun and shade. Plant Ecol 165 (1): 21–26

    Google Scholar 

  • Hansen HC (1959) Einfluss des Lichtes auf die Bildung von Licht- und Schattenblättern der Buche (Fagus sylvatica). Physiol Plantarum 12: 545–550

    Google Scholar 

  • Hansen U, Fiedler B, Rank B (2002) Variation of pigment composition and antioxidative systems along the canopy light gradient in a mixed beech/oak forest: a comparative study on deciduous tree species differing in shade tolerance. Trees-Structure Function 16 (4–5): 354–364

    Google Scholar 

  • Hellgren O (1984) Acclimation to quantum flux density, temperature and photoperiodas effects on growth, developement, chlorophyll content and leaf characteristics in Pelargonium zonale Hybr. Doctoral Thesis. Swedish Univ Agricult Sci, Alnarp, ISBN 91–576–2084–9

  • Hu ZH, Xu YN, Jiang GZ, Kuang TY (2004) Degradation and inactivation of photosystem I complexes during linear heating. Plant Sci 166 (5): 1177–1183

    Google Scholar 

  • James SA, Bell DT (2000) Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances. Tree Physiol 20 (15): 1007–1018

    CAS  PubMed  Google Scholar 

  • Jansen D (2003) Pflanzengerechte Lichtmessung. In: Bundesverband Garten-, Landschafts- und Sportplatzbau e.V. (BGL) (Hrsg) Jahrbuch der Innenraumbegrünung 2003. 2. Ausg. Thalacker-Medien, Braunschweig, S 58–62

  • Joiner JN, Johnson CR, Krantz JK (1980) Effect of light and nitrogen and potassium levels on growth and light compensation point of Ficus benjamina L. J Am Soc Horti Sci 105 (2): 170–173

    CAS  Google Scholar 

  • Kitajima K, Hogan KP (2003) Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant, Cell Environm 40 (26): 857–865

    Google Scholar 

  • Kubatsch A (2003) Akklimatisation von Pflanzen für die Innenraumbegrünung. Reisevorbereitung. Grünforum. LA 10:38–39

    Google Scholar 

  • Lance C J, Guy CL (1992) Chances in pigment levels, rubisco and respiratory enzyme-activity of Ficus benjamina during acclimation to low irradiance. Physiol Plant 86:630–638

    Article  CAS  Google Scholar 

  • Larcher W (1994) Ökophysiologie der Pflanzen. 5. Aufl. Eugen Ulmer, Stuttgart, S 394

  • Ludolph D (1995) Wirkung der Lichtmenge auf Wachstum und Blühen von Zierpflanzen und ihre Anwendung zur Kultursteuerung. Dissertation, Ulrich E. Grauer, Stuttgart

  • Marcelis LFM (1993) Leaf formation in cucumber (Cucumis sativus L.) as influenced by fruit load, light and temperature. Gartenbauwissenschaft 58 (3): 124–129

    Google Scholar 

  • Metzner H (1982) Pflanzenphysiologische Untersuchungen. Fischer , Stuttgart, S 406

  • Morales D, Rodriguez P, Dell’Amico J, Nicolas E, Torrecillas A, Sanchez-Blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biologia Plantarum 47 (2): 203–208.

    Article  Google Scholar 

  • Mortensen LM, Olsen R (1987) Light acclimatization of some foliage plants. Gartenbauwissenschaft 52 (4): 157–161

    Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2003) Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ 26 (4): 505–512

    Google Scholar 

  • Oquist G, Brunes L, Hallgren J-E (1982) Photosynthetic efficiency of Betula pendula acclimated to different quantum flux densities. Plant Cell Environ 5:9–15

    Google Scholar 

  • Oren-Shamir M, Nissim-Levi A (1999) Temperature and gibberellin effects on growth and anthocyanin pigmentation in Photinia leaves. J Horti Sci Biotech 74 (3): 355–360

    CAS  Google Scholar 

  • Pereira JES, Fortes GRD, Da Silva JB (2001) Effects of low temperature application on apple plants over plant growth during acclimatization. Pesquisa Agropecularia Brasileira 36 (1): 89–95

    Google Scholar 

  • Pshibytko NL, Kalitukho LN, Zhavoronkova NB, Kabashnikova LF (2004) The pool of chlorophyllous pigments in barley seedlings of different ages under heat shock and water deficit. Russ J Plant Physiol 51 (1): 15–20

    Article  CAS  Google Scholar 

  • Reyes T, Nell TA, Barrett JE, Conover CA (1996) Irradiance level and fertilizer rate affect acclimatization of Chamaedorea elegans Mart. Hort Sci 31:839–842

    Google Scholar 

  • Sarracino JM, Merritt R, Chin CK (1992) Morphological and physiological characteristics of Leea coccinia and Leea rubra in response to light flux. Hort Sci 27 (5): 400–403

    Google Scholar 

  • Sawwan JS, Ghunem RS (1999) Light acclimatization of Schefflera arboricola. Adv Horti Sci 13:151–155

    Google Scholar 

  • Sitte P, Weiler EW, Kadereit JW, Bresinsky A, Körner C (2002) Strasburger — Lehrbuch der Botanik. 35. Aufl. Spektrum Akademischer Verlag, Heidelberg Berlin, S 1123

  • Svenson SE (2002) Shady Business. Am Nurseryman 195 (2): 23–28

    Google Scholar 

  • Syvertsen JP, Jr Smith ML (1984) Light acclimation in Citrus leaves. I. Changes in physical characteristics, chlorophyll, and nitrogen content. J Am Soc Horti Sci 109 (6): 807–812

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Kubatsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubatsch, A., Ulrichs, C. Pflanzenakklimatisation an Temperatur- und Lichtbedingungen in Innenräumen. Gesunde Pflanzen 57, 81–89 (2005). https://doi.org/10.1007/s10343-005-0069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-005-0069-8

Schlüsselwörter

Keywords

Navigation