Skip to main content
Log in

The contribution of understorey vegetation to ecosystem evapotranspiration in boreal and temperate forests: a literature review and analysis

  • Review Article
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In the context of increasing heat periods and recurrence of droughts, and thus higher soil water depletion, we explored and quantified the role of understorey vegetation in ecosystem evapotranspiration in boreal and temperate forests. We reviewed and analysed about 200 papers that explicitly gave figures of understorey vegetation evapotranspiration relative to different stand features and traits. Understorey vegetation accounted on average for one-third of total ecosystem evapotranspiration during the growing season. Overstorey leaf area index (LAI) is the main variable that drives understorey evapotranspiration through radiation interception. Most data show that below an overstorey LAI of 2–3, the contribution of the understorey vegetation to ecosystem evapotranspiration increases exponentially, following the exponential increase of the climatic demand, i.e. potential evapotranspiration. Different factors have the potential to modulate this effect such as species composition and phenology, root distribution, and interaction with droughts. Consequently, managers must be aware that depending on understorey species present on site and stand structure, understorey vegetation can contribute significantly to a negative stand water balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57:287–301

    Article  Google Scholar 

  • Aussenac G, Granier A (1988) Effects of thinning on water-stress and growth in Douglas-Fir. Can J For Res 18:100–105

    Article  Google Scholar 

  • Bakker MR, Augusto L, Achat DL (2006) Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites. Plant Soil 286:37–51

    Article  CAS  Google Scholar 

  • Balandier P, Collet C, Miller JH, Reynolds PE, Zedaker SM (2006a) Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry 79:3–27

    Article  Google Scholar 

  • Balandier P, Sonohat G, Sinoquet H, Varlet-Grancher C, Dumas Y (2006b) Characterisation, prediction and relationships between different wavebands of solar radiation transmitted in the understorey of even-aged oak stands. Trees-Struct Funct 20:363–370

    Article  Google Scholar 

  • Balandier P, Marquier A, Casella E, Kiewitt A, Coll L, Wehrlen L et al (2013) Architecture, cover and light interception by bramble (Rubus fruticosus): a common understorey weed in temperate forests. Forestry 86:39–46

    Article  Google Scholar 

  • Baldocchi DD, Vogel CA (1996) Energy and CO2 flux densities above and below a temperate broad-leaved forest and a boreal pine forest. Tree Physiol 16:5–16

    Article  PubMed  Google Scholar 

  • Baldocchi DD, Vogel CA, Hall B (1997) Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. J Geophys Res-Atmos 490(102):28939–28951

    Article  Google Scholar 

  • Baldocchi DD, Law BE, Anthoni PM (2000) On measuring and modeling energy fluxes above the floor of a homogeneous and heterogeneous conifer forest. Agric For Meteor 102:187–206

    Article  Google Scholar 

  • Baldocchi DD, Xu L, Kiang N (2004) How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric For Meteor 123(1–2):13–39

    Article  Google Scholar 

  • Baldocchi DD (2005) The role of biodiversity on the evaporation of forests. Forest diversity and function: temperate and boreal systems. Ecol Stud 176:132–148.

    Google Scholar 

  • Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–673

    Article  PubMed  CAS  Google Scholar 

  • Barbier S, Balandier P, Gosselin F (2009) Influence of several tree traits on rainfall partitioning in temperate and boreal forests: a review. Ann For Sci 66:602–602

    Article  Google Scholar 

  • Barbour MM, Hunt JE, Walcroft AS, Rogers GND, McSeveny TM, Whitehead D (2005) Components of ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood density. New Phytol 165:549–558

    Article  PubMed  CAS  Google Scholar 

  • Barrett JW, Youngberg CT (1965) Effect of tree spacing and understory vegetation on water use in a pumice soil. Soil Sci Soc Am J 29:472–475

    Article  Google Scholar 

  • Benyon RG, Nolan RH, Hawthorn SN, Lane PN (2017) Stand-level variation in evapotranspiration in non-water-limited eucalypt forests. J Hydrol 551:233–244

    Article  Google Scholar 

  • Berbigier P, Diawara A, Loustau D (1991) A microclimatic study of the effect of drought on evapotranspiration in a maritime pine stand and its understorey. Ann Sci For 48:157–177

    Article  Google Scholar 

  • Black TA, Tan CS, Nnyamah JU (1980) Transpiration rate of Douglas-Fir trees in thinned and un-thinned stands. Can J Soil Sci 60:625–631

    Article  Google Scholar 

  • Black TA, Kelliher FM, Wallace JS, Stewart JB, Monteith JL, Jarvis PG (1989) Processes controlling understorey evapotranspiration [and Discussion]. Phil Trans R Soc Lond B 324:207–231

    Article  Google Scholar 

  • Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R et al (1997) Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J Geophys Res-Atmos 102:28915–28927

    Article  Google Scholar 

  • Blanken PD, Black TA, Neumann HH, den Hartog G, Yang PC, Nesic Z et al (2001) The seasonal water and energy exchange above and within a boreal aspen forest. J Hydrol 245:118–136

    Article  Google Scholar 

  • Bréda N (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54(392):2403–2417

    Article  PubMed  Google Scholar 

  • Bréda N, Granier A (1996) Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann For Sci 53(2–3):521–536

    Article  Google Scholar 

  • Bréda N, Roman-Amat B (2002) Impact of forest stand management on water resources. La Houille Blanche 88(3):78–84

    Article  Google Scholar 

  • Bréda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15:295–306

    Article  PubMed  Google Scholar 

  • Bréda N, Peiffer M (1999) Etude du bilan hydrique des chênaies de la Forêt Domaniale de la Harth (Haut-Rhin) et impact des épisodes de sécheresse sur la croissance radiale des chênes. ONF Alsace. Strasbourg/ Forstliche Versuchs und Forschungsanstalt Baden-Württemberg, Freiburg, DEU, p. 67.

  • Brown SM, Petrone RM, Chasmer L, Mendoza C, Lazerjan MS, Landhäusser SM, Silins U, Leach J, Devito KJ (2014) Atmospheric and soil moisture controls on evapotranspiration from above and within a Western Boreal Plain aspen forest. Hydrol Process 28(15):4449–4462

    Article  Google Scholar 

  • Carlson DW, Groot A (1997) Microclimate of clear-cut, forest interior, and small openings in trembling aspen forest. Agric For Meteorol 87:313–329

    Article  Google Scholar 

  • Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agric For Meteorol 63:219–237

    Article  Google Scholar 

  • Constantin J, Grelle A, Ibrom A, Morgenstern K (1999) Flux partitioning between understorey and overstorey in a boreal spruce/pine forest determined by the eddy covariance method. Agric For Meteorol 98(9):629–643

    Article  Google Scholar 

  • Daikoku K, Hattori S, Deguchi A, Aoki Y, Miyashita M, Matsumoto K et al (2008) Influence of evaporation from the forest floor on evapotranspiration from the dry canopy. Hydrol Process 22:4083–4096

    Article  Google Scholar 

  • De Lombaerde E, Verheyen K, Van Calster H, Baeten L (2019) Tree regeneration responds more to shade casting by the overstorey and competition in the understorey than to abundance per se. For Ecol Manage 450:117492

    Article  Google Scholar 

  • del Campo AD, González-Sanchis M, García-Prats A, Ceacero CJ, Lull C (2019) The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agric For Meteor 264:266–282

    Article  Google Scholar 

  • Diawara A, Loustau D, Berbigier P (1991) Comparison of two methods for estimating the evaporation of a Pinus pinaster (Ait.) stand: sap flow and energy balance with sensible heat flux measurements by an eddy covariance method. Agric For Meteorol 54:49–66

    Article  Google Scholar 

  • Domec JC, Sun G, Noormets A, Gavazzi MJ, Treasure EA, Cohen E, Domec JC, Sun G, Noormets A, Gavazzi MJ, Treasure EA, Cohen E, Swenson JJ, McNulty SG, King JS (2012) A comparison of three methods to estimate evapotranspiration in two contrasting loblolly pine plantations: age-related changes in water use and drought sensitivity of evapotranspiration components. For Sci 58(5):497–512

    Article  Google Scholar 

  • Drever CR, Lertzman KP (2003) Effects of a wide gradient of retained tree structure on understory light in coastal Douglas-fir forests. Can J For Res 33:137–146

    Article  Google Scholar 

  • Dubbert M, Piayda A, Cuntz M, Correira A, Costa e Silva F, Pereira JS, Werner C (2014) Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange. Front Plant Sci 5:530. https://doi.org/10.3389/fpls.2014.00530

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumas Y (2002) Que savons-nous de la fougère aigle? Rev For Fr 4:357–374

    Article  Google Scholar 

  • Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Gutierrez V, Noordwijk M, Creed IF, Pokorny J, Gaveau D, Spracklen DV, Tobella AB, Ilstedt U, Teuling AJ, Gebrehiwot SG, Sands DC, Muys B, Verbist B, Springgay E, Sugandi Y, Sullivan CA (2017) Trees, forests and water: cool insights for a hot world. Global Environ Change 43:51–61

    Article  Google Scholar 

  • Gash JHC, Stewart JB (1977) The evaporation from Thetford Forest during 1975. J Hydrol 35:385–396

    Article  Google Scholar 

  • Gaudio N, Balandier P, Dumas Y, Ginisty C (2011) Growth and morphology of three forest understorey species (Calluna vulgaris, Molinia caerulea and Pteridium aquilinum) according to light availability. For Ecol Manage 261:489–498

    Article  Google Scholar 

  • Gaudio N, Gendre X, Saudreau M, Seigner V, Balandier P (2017) Impact of tree canopy on the thermal and radiative microclimate in a mixed temperate forest: a new statistical approach to analyse hourly temporal dynamics. Agric For Meteorol 237–238:71–79

    Article  Google Scholar 

  • Gaudio N, Balandier P, Marquier A (2008) Light-dependent development of two competitive species (Rubus idaeus, Cytisus scoparius) colonizing gaps in temperate forest. Ann For Sci, 65.

  • Ge ZM, Kellomäki S, Peltola H, Zhou X, Wang KY, Väisänen H (2011) Effects of varying thinning regimes on carbon uptake, total stem wood growth, and timber production in Norway spruce (Picea abies) stands in southern Finland under the changing climate. Ann For Sci 68:371–383

    Article  Google Scholar 

  • Gebhardt T, Häberle KH, Matyssek R, Schulz C, Ammer C (2014) The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric For Meteor 197:235–243

    Article  Google Scholar 

  • Giuggiola A, Zweifel R, Feichtinger LM, Vollenweider P, Bugmann H, Haeni M, Rigling A (2018) Competition for water in a xeric forest ecosystem—effects of understory removal on soil micro-climate, growth and physiology of dominant Scots pine trees. For Ecol Manage 409:241–249

    Article  Google Scholar 

  • Gobin R, Korboulewsky N, Dumas Y, Balandier P (2015) Transpiration of four common understorey plant species according to drought intensity in temperate forests. Ann For Sci 72(8):1053–1064

    Article  Google Scholar 

  • Gobin R (2014) Relative contribution of understorey vegetation to the water balance of forest stands submitted to climate and management changes. PhD dissertation, University of Orléans, France.

  • Gonzalez M, Augusto L, Gallet-Budynek A, Xue J, Yauschew-Raguenes N, Guyon D et al (2013) Contribution of understory species to total ecosystem aboveground and belowground biomass in temperate Pinus pinaster Ait. forests. For Ecol Manage 289:38–47

    Article  Google Scholar 

  • Granier A, Bobay V, Gash JHC, Gelpe J, Saugier B, Shuttleworth WJ (1990) Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (Pinus pinaster Ait.) in Les Landes forest. Agric For Meteorol 51:309–319

    Article  Google Scholar 

  • Grelle A, Lundberg A, Lindroth A, Moren AS, Cienciala E (1997) Evaporation components of a boreal forest: variations during the growing season. J Hydrol 197:70–87

    Article  Google Scholar 

  • Gurevitch J, Morrow LL, Wallace A, Walsh JS (1992) A meta-analysis of competition in field experiments. Am Nat 140(4):539–572

    Article  Google Scholar 

  • Hamada S, Ohta T, Hiyama T, Kuwada T, Takahashi A, Maximov TC (2004) Hydrometeorological behaviour of pine and larch forests in eastern Siberia. Hydrol Process 18:23–39

    Article  Google Scholar 

  • Iida SI, Ohta T, Matsumoto K, Nakai T, Kuwada T, Kononov AV et al (2009) Evapotranspiration from understory vegetation in an eastern Siberian boreal larch forest. Agric For Meteorol 149:1129–1139

    Article  Google Scholar 

  • Ikawa H, Nakai T, Busey RC, Kim Y, Kobayashi H, Nagai S, Ueyama M, Saito K, Nagano H, Suzuki R, Hinzman L (2015) Understory CO2, sensible heat, and latent heat fluxes in a black spruce forest in interior Alaska. Agric For Meteor 214:80–90

    Article  Google Scholar 

  • Jarosz N, Brunet Y, Lamaud E, Irvine M, Bonnefond JM, Loustau D (2008) Carbon dioxide and energy flux partitioning between the understorey and the overstorey of a maritime pine forest during a year with reduced soil water availability. Agric For Meteorol 148:1508–1523

    Article  Google Scholar 

  • Kelliher FM, Black TA, Price DT (1986) Estimating the effects of understory removal from a douglas-fir forest using a 2-layer canopy evapotranspiration model. Water Resour Res 22:1891–1899

    Article  Google Scholar 

  • Kelliher FM, Whitehead D, McAneney KJ, Judd MJ (1990) Partitioning evapotranspiration into tree and understorey components in two young pinus radiata D. Don Stands Agric for Meteorol 50:211–227

    Article  Google Scholar 

  • Kelliher FM, Leuning R, Raupach MR, Schulze ED (1995) Maximum conductances for evaporation from global vegetation types. Agric For Meteorol 73:1–16

    Article  Google Scholar 

  • Kelliher FM, Hollinger DY, Schulze ED, Vygodskaya NN, Byers JN, Hunt JE et al (1997) Evaporation from an eastern Siberian larch forest. Agric For Meteorol 85:135–147

    Article  Google Scholar 

  • Kelliher FM, Lloyd J, Arneth A, Byers JN, McSeveny TM, Milukova I et al (1998) Evaporation from a central Siberian pine forest. J Hydrol 205:279–296

    Article  Google Scholar 

  • Kellomaki S, Oker-Blom P (1983) Canopy structure and light climate in a young Scots pine stand. Silva Fenn 17:1–21

    Article  Google Scholar 

  • Kohler M, Sohn J, Nagele G, Bauhus J (2010) Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur J For Res 129:1109–1118

    Article  Google Scholar 

  • Kozii N, Haahti K, Tor-ngern P, Chi J, Hasselquist EM, Laudon H, Launiainen S, Oren R, Peichl M, Wallerman J, Hasselquist NJ (2020) Partitioning growing season water balance within a forested boreal catchment using sap flux, eddy covariance, and a process-based model. Hydrol Earth Syst Sci 24(6):2999–3014

    Article  Google Scholar 

  • Lagergren F, Lankreijer H, Lindroth A, Cienciala E, Mo M (2008) Thinning effects on pine-spruce forest transpiration in central Sweden. For Ecol Manage 255:2312–2323

    Article  Google Scholar 

  • Landuyt D, De Lombaerde E, Perring MP, Hertzog LR, Ampoorter E, Maes SL, De Frenne P, Ma S, Proesmans W, Blondeel H, Sercu BK, Wang B, Wasof S, Verheyen K (2019) The functional role of temperate forest understorey vegetation in a changing world. Global Change Biol 25(11):3625–3641

    Article  Google Scholar 

  • Launiainen S (2010) Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest. Biogeosciences 7:3921–3940

    Article  Google Scholar 

  • Launiainen S, Rinne J, Pumpanen J, Kulmala L, Kolari P, Keronen P et al (2005) Eddy covariance measurements of CO2 and sensible and latent heat fluxes during a full year in a boreal pine forest trunk-space. Boreal Environ Res 10:569–588

    CAS  Google Scholar 

  • Leuschner C (2002) Air humidity as an ecological factor for woodland herbs: leaf water status, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high vpd levels. Flora 197:262–274

    Article  Google Scholar 

  • Li G, Wan L, Cui M, Wu B, Zhou J (2019) Influence of canopy interception and rainfall kinetic energy on soil erosion under forests. Forests 10:509. https://doi.org/10.3390/f10060509

    Article  Google Scholar 

  • Lieffers VJ, Stadt KJ (1994) Growth of understory Picea glauca, Calamagrostis canadensis, and Epilobium angustifolium in relation to overstory light transmission. Can J For Res 24:1193–1198

    Article  Google Scholar 

  • Lindroth A (1985) Seasonal and diurnal variation of energy budget components in coniferous forests. J Hydrol 82:1–15

    Article  Google Scholar 

  • Llorens P, Domingo F (2007) Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J Hydrol 335(1):37–54.

  • Loustau D, Cochard H (1991) Utilisation d’une chambre de transpiration portable pour l’estimation de l’évapotranspiration d’un sous-bois de pin maritime à molinie (Molinia caerulea (L) Moench). Ann For Sci 48:29–45

    Article  Google Scholar 

  • Lüttschwager D, Rust S, Wulf M, Forkert J, Huttl RF (1999) Tree canopy and herb layer transpiration in three Scots pine stands with different stand structures. Ann For Sci 56(695):265–274

    Article  Google Scholar 

  • Marrs RH, Watt AS (2006) Biological flora of the british isles: Pteridium aquilinum (L.) Kuhn. J Ecol 94:1272–1321

    Article  Google Scholar 

  • Martínez-Zavala L, Jordán-López A (2009) Influence of different plant species on water repellency in Mediterranean heathland soils. CATENA 76:215–223

    Article  Google Scholar 

  • Matsushima M, Chang SX (2006) Vector analysis of understory competition, N fertilization, and litter layer removal effects on white spruce growth and nutrition in a 13-year-old plantation. For Ecol Manage 236:332–341

    Article  Google Scholar 

  • Messier C, Mitchell AK (1994) Effects of thinning in a 43-year-old Douglas-fir stand on above- and below-ground biomass allocation and leaf structure of understory Gaultheria shallon. For Ecol Manage 68:263–271

    Article  Google Scholar 

  • Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349(6250):823–826

    Article  PubMed  CAS  Google Scholar 

  • Mitchell PJ, Benyon RG, Lane PN (2012) Responses of evapotranspiration at different topographic positions and catchment water balance following a pronounced drought in a mixed species eucalypt forest, Australia. J Hydrol 440:62–74

    Article  Google Scholar 

  • Monson RK, Grant MC, Jaeger CH, Schoettle AW (1992) Morphological causes for the retention of precipitation in the crowns of alpine plants. Environ Exp Bot 32:319–327

    Article  Google Scholar 

  • Monteith J (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    PubMed  CAS  Google Scholar 

  • Moola FM, Mallik AU (1998) Morphological plasticity and regeneration strategies of velvet leaf blueberry (Vaccinium myrtilloides Michx.) following canopy disturbance in boreal mixedwood forests. For Ecol Manage 111:35–50

    Article  Google Scholar 

  • Moore KE, Fitzjarrald DR, Sakai RK, Freedman JM (2000) Growing season water balance at a boreal jack pine forest. Water Resour Res 36:483–493

    Article  Google Scholar 

  • Morikawa Y, Hattori S, Kiyono Y (1986) Transpiration of a 31-year-old Chamaecyparis obtusa Endl. stand before and after thinning. Tree Physiol 2:105–114

    Article  PubMed  Google Scholar 

  • Morris CE (2018) Phytobiomes contribute to climate processes that regulate temperature, wind, cloud cover, and precipitation. Phytobiomes J 2:55–61

    Article  Google Scholar 

  • Muys B, Nyssen J, du Toit B, Vidale E, Prokofieva I, Mavsar R, Palahi M (2014) Water-related ecosystem services of forests: learning from regional cases. In Forests under pressure: local responses to global issues. Int Union For Res Organ (IUFRO) 32:423–440

    Google Scholar 

  • Ohta T, Hiyama T, Tanaka H, Kuwada T, Maximov TC, Ohata T et al (2001) Seasonal variation in the energy and water exchanges above and below a larch forest in eastern Siberia. Hydrol Process 15:1459–1476

    Article  Google Scholar 

  • Oishi AC, Miniat CF, Novick KA, Brantley ST, Vose JM, Walker JT (2018) Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agric For Meteor 252:269–282

    Article  Google Scholar 

  • Osberg PM (1986) Lysimeter measurements of salal understory evapotranspiration and forest soil evaporation after salal removal in a Douglas-fir plantation. University of British Columbia.

  • Den Ouden J (2000) The role of bracken (Pteridium aquilinum) in forest dynamics. PhD dissertation, Wageningen University, The Netherlands.

  • Paço TA, David TS, Henriques MO, Pereira JS, Valente F, Banza J, Pereira FL, Pinto C, David JS (2009) Evapotranspiration from a Mediterranean evergreen oak savannah: the role of trees and pasture. J Hydrol 369(1–2):98–106

    Article  Google Scholar 

  • Prévosto B, Helluy M, Gavinet J, Fernandez C, Balandier P (2020) Microclimate in Mediterranean pine forests: What is the influence of the shrub layer? Agric For Meteorol 282–283:107856. https://doi.org/10.1016/j.agrformet.2019.107856

    Article  Google Scholar 

  • Puettmann KJ (2011) Silvicultural challenges and options in the context of global change: “simple” fixes and opportunities for new management approaches. J For 109:321–331

    Google Scholar 

  • Putuhena WM, Cordery I (1996) Estimation of interception capacity of the forest floor. J Hydrol 180:283–299

    Article  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rascher KG, Große-Stoltenberg A, Máguas C, Meira-Neto JAA, Werner C (2011) Acacia longifolia invasion impacts vegetation structure and regeneration dynamics in open dunes and pine forests. Biol Invasions 13(5):1099–1113

    Article  Google Scholar 

  • Ricard JP, Messier C (1996) Abundance, growth and allometry of red raspberry (Rubus idaeus L.) along a natural light gradient in a northern hardwood forest. For Ecol Manage 81:153–160

    Article  Google Scholar 

  • Roberts J (1983) Forest transpiration: a conservative hydrological process? J Hydrol 66:133–141

    Article  Google Scholar 

  • Roberts J, Pymar CF, Wallace JS, Pitman RM (1980) seasonal changes in leaf area, stomatal and canopy conductances and transpiration from bracken below a forest canopy. J Appl Ecol 17:409–422

    Article  Google Scholar 

  • Roberts J, Wallace JS, Pitman RM (1984) Factors affecting stomatal conductance of bracken below a forest canopy. J Appl Ecol 21:643–655

    Article  Google Scholar 

  • Royo AA, Carson WP (2006) On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J For Res 1362:1345–1362

    Article  Google Scholar 

  • Sabater AM, Ward HC, Hill T, Gornall J, Wade TJ, Evans JG, Prieto-Blanco A, Disney M, Phoenix GK, Williams M, Huntley B, Baxter R, Mencuccini M, Poyatos R (2020) Transpiration from subarctic deciduous woodlands: environmental controls and contribution to ecosystem evapotranspiration. Ecohydrology 13(3):e2190

    Article  Google Scholar 

  • Schmidt-Walter P, Richter F, Herbst M, Schuldt B, Lamersdorf NP (2014) Transpiration and water use strategies of a young and a full-grown short rotation coppice differing in canopy cover and leaf area. Agric For Meteorol 195–196:165–178

    Article  Google Scholar 

  • Segoli M, Ungar ED, Shachak M (2008) Shrubs enhance resilience of a semi-arid ecosystem by engineering and regrowth. Ecohydrology 1(4):330–339

    Article  Google Scholar 

  • Simonin K, Kolb TE, Montes-Helu M, Koch GW (2007) The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought. Agric For Meteorol 143:266–276

    Article  Google Scholar 

  • Smith NJ (1991) Sun and shade leaves: clues to how salal (Gaultheria shallon) responds to overstory stand density. Can J For Res 21:300–305

    Article  Google Scholar 

  • Sohn JA, Saha S, Bauhus J (2016) Potential of forest thinning to mitigate drought stress : a meta-analysis. For Ecol Manage 380:261–273

    Article  Google Scholar 

  • Soubie R, Heinesch B, Granier A, Aubinet M, Vincke C (2016) Evapotranspiration assessment of a mixed temperate forest by four methods: Eddy covariance, soil water budget, analytical and model. Agric For Meteor 228:191–204

    Article  Google Scholar 

  • Speich MJR (2019) Quantifying and modeling water availability in temperate forests: a review of drought and aridity indices. iForest 12(1):1–16.

  • Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe-temperate zone. J Environ Manage 67:55–65

    Article  PubMed  Google Scholar 

  • Staudt K, Serafimovich A, Siebicke L, Pyles RD, Falge E (2011) Vertical structure of evapotranspiration at a forest site (a case study). Agric For Meteorol 151:709–729

    Article  Google Scholar 

  • Tan CS, Black TA, Nnyamah JU (1978) A simple diffusion model of transpiration applied to a thinned Douglas-Fir Stand. Ecology 59:1221–1229

    Article  Google Scholar 

  • Taylor K, Rowland AP, Jones HE (2001) Molinia caerulea (L.) Moench. J Ecol 89:126–144

    Article  Google Scholar 

  • Turc L (1961) Évaluation des besoins en eau d’irrigation. Évapotranspiration potentielle (Formule climatique simplifiée mise à jour). Ann Agron 12(1):13–49.

  • van der Maaten E (2013) Thinning prolongs growth duration of European beech (Fagus sylvatica L.) across a valley in southwestern Germany. For Ecol Manage 306:135–141

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York. 0-387-95457-0

    Book  Google Scholar 

  • Vincke C, Thiry Y (2008) Water table is a relevant source for water uptake by a Scots pine (Pinus sylvestris L.) stand: evidences from continuous evapotranspiration and water table monitoring. Agr for Meteorol 148:1419–1432

    Article  Google Scholar 

  • Vincke C, Bréda N, Granier A, Devillez F (2005a) Evapotranspiration of a declining Quercus robur (L.) stand from 1999 to 2001. I. Trees and forest floor daily transpiration. Ann For Sci 62:503–512

    Article  Google Scholar 

  • Vincke C, Granier A, Bréda N, Devillez F (2005b) Evapotranspiration of a declining Quercus robur (L.) stand from 1999 to 2001. II. Daily actual evapotranspiration and soil water reserve. Ann For Sci 62:615–623

    Article  Google Scholar 

  • Wedler M, Heindl B, Hahn KB, Bernhofer C, Tenhunen JD (1996) Model based estimates of water loss from “patches” of the understory mosaic of the Hartheim Scots pine plantation. Theor Appl Climatol 53:135–144

    Article  Google Scholar 

  • Whitehead D, Kelliher FM, Lane PM, Pollock DS (1994) seasonal partitioning of evaporation between trees and understorey in a widely spaced Pinus radiata stand. J Appl Ecol 31:528–542

    Article  Google Scholar 

  • Wieser G, Gruber A, Oberhuber W (2018) Growing season water balance of an inner alpine Scots pine (Pinus sylvestris L.) forest. IForest Biogeo For 11:469.

  • Wilson KB, Hanson PJ, Baldocchi DD (2000) Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle. Agric For Meteorol 102:83–103

    Article  Google Scholar 

  • Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001) A comparison of methods for determining forest evapotranspiration and its components: sapflow, soil water budget, eddy covariance and catchment water balance. Agric For Meteor 106:153–168

    Article  Google Scholar 

  • Wohlfahrt G, Bianchi K, Cernusca A (2006) Leaf and stem maximum water storage capacity of herbaceous plants in a mountain meadow. J Hydrol 319:383–390

    Article  Google Scholar 

  • Yaseef NR, Yakir D, Rotenberg E, Schiller G, Cohen S (2010) Ecohydrology of a semi-arid forest : partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrology 3(2):143–154. https://doi.org/10.1002/eco.65

    Article  Google Scholar 

  • Zapater M (2009) Diversité fonctionnelle de la réponse à la sécheresse édaphique d'espèces feuillues en peuplement mélangé : Approches écophysiologique et isotopique. PhD dissertation, Nancy, France.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Balandier.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Communicated by Andrés Bravo-Oviedo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 207 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balandier, P., Gobin, R., Prévosto, B. et al. The contribution of understorey vegetation to ecosystem evapotranspiration in boreal and temperate forests: a literature review and analysis. Eur J Forest Res 141, 979–997 (2022). https://doi.org/10.1007/s10342-022-01505-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-022-01505-0

Keywords

Navigation