Skip to main content
Log in

Detection, description, and technological properties of colour aberration in wood of standards and shoots from a chestnut (Castanea sativa Mill.) coppice stand

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Sweet chestnut forests occupy an important role in Italy and Europe, its resilience is often affected by aggressive pathogen attack. In the last times some chestnut wood colour aberrations have attracted attention suggesting intercorrelation with biotic attacks. The present study analyses chestnut wood from a coppice-with-standards stand in Central Italy aiming to understand the reasons for discolorations in respect to a possible effect on wood physical and mechanical character. Wood specimens with different chromatic aberrations were analysed by mechanical tests, microscopic techniques (SEM), specific density measurements, and ATR-FTIR spectroscopy. Standing trees and logs were investigated by IML-RESI. Results by SEM show as all stained wood zones correspond to mycelium presence and abnormal cell wall morphologies. No real trend was found between specific density, or compressive strength, with coloured samples, infact some test samples with colour aberrations had the highest value for specific gravity. Comparing sound wood with stained wood, the semiquantitative analysis by ATR-FTIR spectroscopy allowed to detect a change in the ratio lignin/cellulose which might be due to a white rot fungus. IML-Resi has showed wood decay symptoms at root collar in coppice standards with a decrease in amplitude at least of 30%. The results find an agreement with similar studies carried out in Spanish chestnut suggesting to indeep the analysis to investigated the geographical distribution and the impact of the damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ayres MP, Lombardero MJ (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262(3):263–286. https://doi.org/10.1016/S0048-9697(00)00528-3

  • Beccaro GL, Alma A, Bounous G, Gomes-Laranjo J (2019) The chestnut handbook: crop & forest management. CRC Press, Taylor & Francis Group, Boca Raton, FL (USA), p 378

  • Blank L, Martín-García J, Bezos D, Vettraino AM, Krasnov H, Lomba JM, Fernández M, Diez JJ (2019) Factors affecting the distribution of pine pitch canker in Northern Spain. Forests 10(4):305. https://www.mdpi.com/1999-4907/10/4/305

  • Bonsignore CP, Vizzari G, Vono G, Bernardo U (2020) Short-term cold stress affects parasitism on the Asian Chestnut Gall Wasp Dryocosmus kuriphilus. Insects 11(12):841. https://doi.org/10.3390/insects11120841

  • Brunetti M, Nocetti M, Pizzo B, Aminti G, Cremonini C, Negro F, Zanuttini R, Romagnoli M, Scarascia Mugnozza G (2020) Structural products made of beech wood: quality assessment of the raw material. Eur J Wood Wood Prod 78(5):961–970. https://doi.org/10.1007/s00107-020-01542-9

  • Buotte PC, Hicke JA, Preisler HK, Abatzoglou JT, Raffa KF, Logan JA (2017) Recent and future climate suitability for whitebark pine mortality from mountain pine beetles varies across the western US. Forest Ecol Manage 399:132–142. https://doi.org/10.1016/j.foreco.2017.05.032

  • Butin H (1995) Tree diseases and disorders: causes, biology, and control in forest and amenity trees. Oxford University Press, 198 Madison Avenue, New York, NY 10016 (USA). https://www.semanticscholar.org/paper/Tree-Diseases-and-Disorders%3A-Causes%2C-Biology%2C-and-Butin/38c84bad10d413197d3a5ee6dc9d0ffd05aa2ddd

  • Camarero JJ, Álvarez-Taboada F, Hevia A, Castedo-Dorado F (2018) Radial growth and wood density reflect the impacts and susceptibility to defoliation by gypsy moth and climate in radiata pine. Front Plant Sci 9(1582):12. https://doi.org/10.3389/fpls.2018.01582

    Article  Google Scholar 

  • Carbone F, Moroni S, Mattioli W, Mazzocchi F, Romagnoli M, Portoghesi L (2020) Competitiveness and competitive advantages of chestnut timber laminated products. Ann Forest Sci 77(2):51. https://doi.org/10.1007/s13595-020-00950-4

    Article  Google Scholar 

  • Clair B, Thibaut B (2014) Physical and mechanical properties of reaction wood. In: Gardiner B, Barnett J, Saranpää P, Gril J (eds) The biology of reaction wood. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, pp 171–200. https://doi.org/10.1007/978-3-642-10814-3_6

  • Clark SL, Schlarbaum SE, Saxton AM, Baird R (2019) Eight-year blight (Cryphonectria parasitica) resistance of backcross-generation American chestnuts (Castanea dentata) planted in the southeastern United States. Forest Ecol Manage 433:153–161. https://doi.org/10.1016/j.foreco.2018.10.060

    Article  Google Scholar 

  • Conedera M, Tinner W, Krebs P, De Rigo D, Caudullo G (2016) Castanea sativa in Europe: distribution, habitat, usage and treats. In: San-Miguel-Ayanz J, De Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European Atlas of forest tree species. Publication Office of the European Union, Luxemburg. https://forest.jrc.ec.europa.eu/en/european-atlas/

  • Conedera M, Krebs P, Gehring E, Wunder J, Hülsmann L, Abegg M, Maringer J (2021) How future-proof is Sweet chestnut (Castanea sativa) in a global change context? Forest Ecol Manage 494:119320. https://doi.org/10.1016/j.foreco.2021.119320

    Article  Google Scholar 

  • Costello LR, Quarles SL (1999). Detection of wood decay in blue gum and elm: an evaluation of the Resistograph and the portable drill. J Arboricul 25(6):311–318. https://www.semanticscholar.org/paper/DETECTION-OF-WOOD-DECAY-IN-BLUE-GUM-AND-ELM%3A-AN-OF-Costello-Quarles/0f57fcbb785cdf67306ac9b992e061cf026bbc5c

  • Čufar K, Cherubini M, Gričar Ji, Prislan P, Spina S, Romagnoli M (2011) Xylem and phloem formation in chestnut (Castanea sativa Mill.) during the 2008 growing season. Dendrochronologia 29 (3):127–134. https://doi.org/10.1016/j.dendro.2011.01.006.

  • Delfanti LMP, Bedini R, Romagnoli M, Recanatesi F, Meacci F, Caruso L, Manzo A, Salvati L (2014) Estimation of agroforestry biomasses available for energy purposes in a municipality in central Italy as instrument for energy planning. Appl Math Sci 8(131):6577–6587. https://doi.org/10.12988/ams.2014.46442.

  • Ferracini C, Ferrari E, Pontini M, Saladini MA, Alma A (2019) Effectiveness of Torymus sinensis: a successful long-term control of the Asian chestnut gall wasp in Italy. J Pest Sci 92(1):353–359. https://doi.org/10.1007/s10340-018-0989-6

    Article  Google Scholar 

  • Freitas TR, Santos JA, Silva AP, Fraga H (2021) Influence of climate change on chestnut trees: a review. Plants 10(7):1463. https://doi.org/10.3390/plants10071463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Génova Fernández R, Gracia Alonso C (1984). Análisis dendroclimatológico (Castanea sativa Mill) en el macizo del Montseny. Mediterránea. Serie de Estudios Biológicos 7:67–82. https://doi.org/10.14198/MDTRRA1984.7.05

  • Greco S, Infusino M, Ienco A, Scalercio S (2018) How different management regimes of chestnut forests affect diversity and abundance of moth communities? 42(2):59–67. https://doi.org/10.12899/asr-1503

  • Gunduz G, Oral MA, Akyüz M, Aydemir D, Yaman B, Asik N, Bülbül AS, Allahverdiyev S (2016) Physical, morphological properties and Raman spectroscopy of Chestnut Blight Diseased Castanea sativa Mill. wood. Cerne 22:43–58. https://doi.org/10.1590/01047760201622012101

  • Imposa S, Mele G, Corrao M, Coco G, Battaglia G (2014) Characterization of decay in the wooden roof of the S. Agata Church of Ragusa Ibla (Southeastern Sicily) by means of sonic tomography and resistograph penetration tests. Int J Arch Herit 8(2):213–223. https://doi.org/10.1080/15583058.2012.685924

    Article  Google Scholar 

  • Johnstone D, Ades P, Moore G and Smith I (2007). Predicting wood decay in eucalypts using an expert System and the IML-resistograph drill. Arboricul Urban For 33:76–82. https://www.semanticscholar.org/paper/Predicting-wood-decay-in-eucalypts-using-an-expert-Johnstone-Ades/3a048a53556c06fbac7a1c678f311bffb9d82f5f#paper-header

  • Manetti MC, Becagli C, Carbone F, Corona P, Giannini T, Romano R, Pelleri F (2017) Linee guida per la selvicoltura dei cedui di castagno. Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Rome, Italy. https://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/17415

  • Marcolin E, Pividori M, Colombari F, Manetti MC, Pelleri F, Conedera M, Gehring E (2021). Impact of the Asian gall wasp Dryocosmus kuriphilus on the radial growth of the European chestnut Castanea sativa. J Appl Ecol 58(6):1212–1224. https://doi.org/10.1111/1365-2664.13861

  • Marini F, Battipaglia G, Manetti MC, Corona P, Romagnoli M (2019) Impact of climate, stand growth parameters, and management on isotopic composition of tree rings in chestnut coppices. Forests 10(12):1148. https://doi.org/10.3390/f10121148

    Article  Google Scholar 

  • Marini F, Manetti MC, Corona P, Portoghesi L, Vinciguerra V, Tamantini S, Kuzminsky E, Zikeli F, Romagnoli M (2021a) Influence of forest stand characteristics on physical, mechanical properties and chemistry of chestnut wood. Sci Rep 11(1):1549. https://doi.org/10.1038/s41598-020-80558-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marini F, Portoghesi L, Manetti MC, Salvati L, Romagnoli M (2021b) Gaps and perspectives for the improvement of the sweet chestnut forest-wood chain in Italy. Ann Silvicul Res 46(2):112–127. https://doi.org/10.12899/asr-2203

  • Meyer JB, Gallien L, Prospero S (2015) Interaction between two invasive organisms on the European chestnut: does the chestnut blight fungus benefit from the presence of the gall wasp? FEMS Microbiol Ecol 91(11). https://doi.org/10.1093/femsec/fiv122

  • Militz H, Busetto D, Hapla F (2003). Investigation on natural durability and sorption properties of Italian Chestnut (Castanea sativa Mill.) from coppice stands. Holz als Roh- und Werkstoff 61(2):133–141. https://doi.org/10.1007/s00107-002-0357-2

  • Naumann A, Navarro-González M, Peddireddi S, Kües U, Polle A (2005) Fourier transform infrared microscopy and imaging: detection of fungi in wood. Fungal Genetics Biol 42(10):829–835. https://doi.org/10.1016/j.fgb.2005.06.003

    Article  Google Scholar 

  • Nicolini E, Caraglio Y, Pélissier R, Leroy C, Roggy JC (2003) Epicormic Branches: a growth indicator for the tropical forest tree, Dicorynia guianensis Amshoff (Caesalpiniaceae). Ann Bot 92(1):97–105. https://doi.org/10.1093/aob/mcg119

    Article  PubMed  PubMed Central  Google Scholar 

  • Özgenç Ö, Durmaz S, Kuştaş S (2017) Chemical analysis of tree barks using ATR-FTIR spectroscopy and conventional techniques. BioResources 12:9143–9151. https://doi.org/10.15376/biores.12.4.9143-9151

  • Paletto A, Bernardi S, Pieratti E, Teston F, Romagnoli M (2019) Assessment of environmental impact of biomass power plants to increase the social acceptance of renewable energy technologies. Heliyon 5(7):e02070. https://doi.org/10.1016/j.heliyon.2019.e02070

  • Palmeri V, Cascone P, Campolo O, Grande SB, Laudani F, Malacrinò A, Guerrieri E (2014) Hymenoptera wasps associated with the Asian gall wasp of chestnut (Dryocosmus kuriphilus) in Calabria, Italy. Phytoparasitica 42(5):699–702. https://doi.org/10.1007/s12600-014-0411-8

  • Pandey KK, Pitman A (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad 52:151–160. https://doi.org/10.1016/S0964-8305(03)00052-0

  • Pasche S, Calmin G, Auderset G, Crovadore J, Pelleteret P, Mauch-Mani B, Barja F, Paul B, Jermini M, Lefort F (2016). Gnomoniopsis smithogilvyi causes chestnut canker symptoms in Castanea sativa shoots in Switzerland. Fungal Genetics Biol 87:9–21. https://doi.org/10.1016/j.fgb.2016.01.002

  • Peters FS, Wunderlich L, Metzler B (2019) First report of Phytophthora cinnamomi in forest stands in Germany. Forest Pathology 49(2):e12485. https://doi.org/10.1111/efp.12485

  • Pieratti E, Bernardi S, Romagnoli M, Sartori O, Paletto A (2019) Offerta e domanda di biomasse legnose ad uso energetico in provincia di Trento: un'indagine conoscitiva. Forest@ Rivista di Selvicoltura ed Ecologia Forestale 16(2):16–25. https://doi.org/10.3832/efor3037-016

  • Pureswaran DS, Roques A, Battisti A (2018) Forest insects and climate change. Curr for Rep 4(2):35–50. https://doi.org/10.1007/s40725-018-0075-6

    Article  Google Scholar 

  • Regué A, Bassié L, De-Miguel S, Colinas C (2019) Environmental and stand conditions related to Fistulina hepatica heart rot attack on Castanea sativa. Forest Pathol 49(3):e12517. https://doi.org/10.1111/efp.12517

  • Rigling D, Prospero S (2018) Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol Plant Pathol 19(1):7–20. https://doi.org/10.1111/mpp.12542

    Article  CAS  PubMed  Google Scholar 

  • Roberts M, Gilligan CA, Kleczkowski A, Hanley N, Whalley AE, Healey JR (2020) The effect of forest management options on forest resilience to pathogens. Front Forests Global Change 3(7). https://doi.org/10.3389/ffgc.2020.00007

  • Romagnoli M, Nocetti M, Sarlatto M, Evangelista L (2004) Dendrochronological assessment of chestnut (Castanea sativa Mill.) for dating purposes in Central Italy. Dendrochronologia 21(3):117–130. https://doi.org/10.1078/1125.7865.00048

    Article  Google Scholar 

  • Romagnoli M, Cherubini M, Prislan P, Gričar J, Spina S, Čufar K (2011) Main phases of wood formation in chestnut (Castanea sativa) in Central Italy—comparison of seasons 2008 and 2009. Drvna Industrija 62(4):269–275. https://hrcak.srce.hr/75153

  • Romagnoli M, Spina S (2013) Physical and mechanical wood properties of ring-shaken chestnut (Castanea sativa) trees. Can J Forest Res 43:200–207. https://doi.org/10.1139/cjfr-2012-0357

    Article  Google Scholar 

  • Romagnoli M, Cavalli D, Spina S (2014) Wood quality of chestnut: relationship between ring width, specific gravity, and physical and mechanical properties. BioResources 9(1). https://doi.org/10.15376/biores.9.1.1132-1147

  • Romagnoli M, Cavalli D, Pernarella R, Zanuttini R, Togni M (2015) Physical and mechanical characteristics of poor-quality wood after heat treatment. iForest Biogeosci For 8:884–891. https://doi.org/10.3832/ifor1229-007

  • Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula J, Holdenrieder O, Jankovsky L, Jung T, Jurc D, Kirisits T, Kunca A, Lygis V, Malecka M, Marcais B, Schmitz S, Schumacher J, Solheim H, Solla A, Szabò I, Tsopelas P, Vannini A, Vettraino AM, Webber J, Woodward S, Stenlid J (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197(1):238–250. https://doi.org/10.1111/j.1469-8137.2012.04364.x

    Article  CAS  PubMed  Google Scholar 

  • Sartor C, Dini F, Torello Marinoni D, Mellano MG, Beccaro GL, Alma A, Quacchia A, Botta R (2015) Impact of the Asian wasp Dryocosmus kuriphilus (Yasumatsu) on cultivated chestnut: Yield loss and cultivar susceptibility. Sci Hortic 197:454–460. https://doi.org/10.1016/j.scienta.2015.10.004

    Article  Google Scholar 

  • Schwarze FWMR, Baum S and Fink S (2000a) Dual modes of degradation by Fistulina hepatica in xylem cell walls of Quercus robur. Mycol Res 104(7):846–852. https://doi.org/10.1017/S0953756299002063

  • Schwarze FWMR, Engels J, Mattheck C (2000b) Fungal strategies of wood decay in trees. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57302-6

  • Seybold SJ, Klingeman WE III, Hishinuma SM, Coleman TW, Graves AD (2019) Status and impact of Walnut Twig beetle in urban forest, orchard, and native forest ecosystems. J For 117(2):152–163. https://doi.org/10.1093/jofore/fvy081

  • Shuttleworth LA, Guest DI (2017) The infection process of chestnut rot, an important disease caused by Gnomoniopsis smithogilvyi (Gnomoniaceae, Diaporthales) in Oceania and Europe. Austr Plant Pathol 46(5):397–405. https://doi.org/10.1007/s13313-017-0502-3

  • Simoni S, Nannelli R, Roversi PF, Turchetti T, Bouneb M (2014) Thyreophagus corticalis as a vector of hypovirulence in Cryphonectria parasitica in chestnut stands. Exp Appl Acarol 62(3):363–375. https://doi.org/10.1007/s10493-013-9738-y

    Article  PubMed  Google Scholar 

  • Spina S, Romagnoli M (2010) Characterization of ring shake defect in chestnut (Castanea sativa Mill.) wood in the Lazio Region (Italy). For Int J Forest Res 83(3):315–327. https://doi.org/10.1093/forestry/cpq014

  • Thurman JH, Crowder DW, Northfield TD (2017) Biological control agents in the Anthropocene: current risks and future options. Curr Opin Insect Sci 23:59–64. https://doi.org/10.1016/j.cois.2017.07.006

  • Tusell LM, Rovira N (2006). La situació actual del castanyer (Castanea sativa) a Catalunya. Consorci Forestal de Catalunya

  • Ugolini F, Massetti L, Pedrazzoli F, Tognetti R, Vecchione A, Zulini L, Maresi G (2014) Ecophysiological responses and vulnerability to other pathologies in European chestnut coppices, heavily infested by the Asian chestnut gall wasp. Forest Ecol Manage 314:38–49. https://doi.org/10.1016/j.foreco.2013.11.031

  • UNI ISO 3787:1985 (1985) Wood. Test methods. Determination of ultimate stress in compression parallel to grain. Italian Unification Body (UNI), Milan, Italy, pp 1–4

  • Vannini A, Morales-Rodriguez C, Aleandri MP, Bruni N, Dalla Valle M, Mazzetto T, Martignoni D, Vettraino AM (2018). Emerging new crown symptoms on Castanea sativa (Mill.): attempting to model interactions among pests and fungal pathogens. Fungal Biol 122(9):911–917. https://doi.org/10.1016/j.funbio.2018.05.006

  • Vannini A, Vettraino AM, Martignoni D, Morales-Rodriguez C, Contarini M, Caccia R, Paparatti B, Speranza S (2017) Does Gnomoniopsis castanea contribute to the natural biological control of chestnut gall wasp? Fungal Biol 121(1):44–52. https://doi.org/10.1016/j.funbio.2016.08.013

  • Vettraino AM, Morel O, Perlerou C, Robin C, Diamandis S, Vannini A (2005) Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with Ink Disease and crown decline. Eur J Plant Pathol 111(2):169. https://doi.org/10.1007/s10658-004-1882-0

  • Wiedenbeck J, Smith K (2018) Hardwood management, tree wound response, and wood product value. For Chronicle 94:292–306. https://doi.org/10.5558/tfc2018-042

  • Yurkewich JI, Castaño C, Colinas C (2017) Chestnut red stain: identification of the fungi associated with the costly discolouration of Castanea sativa. Forest Pathol 47. https://doi.org/10.1111/efp.12335

  • Zambon I, Monarca D, Cecchini M, Bedini R, Longo B, Romagnoli M, Marucci A (2016) Alternative energy and the development of local rural contexts: an approach to improve the degree of smart cities in the Central-Southern Italy. Contemp Eng Sci 9(28):1371–1386. https://doi.org/10.12988/ces.2016.68143

Download references

Acknowledgements

We thank the municipality of Lariano (Rome), in particular Dott. Fabrizio Dezi for the support.

Funding

The research was funded by the “Departments of Excellence—2018” Program (Dipartimenti di Eccellenza) of the Italian Ministry of Education, University and Research, DIBAF-Department of University of Tuscia, Project “Landscape 4.0—food, wellbeing and environment”. Further support was recieved by the project PON-MISE (“Imprese e Competitività”) F/2000 03/01-03/X45 “Innovazione e sostenibilità della filiera Foresta-Legno: bioeconomia circolare del legno e valorizzazione di foreste dell’Italia centro-meridionale”. The research was supported also by of Lariano municipality.

Author information

Authors and Affiliations

Authors

Contributions

Experimental plan MR. Data acquisition ST and SB. Results and Discussion all the authors. First draft MR and ST. Reviewing, checking and improving the manuscript GSM, LP, AMV and FZ. Final version checked by all the authors.

Corresponding author

Correspondence to Manuela Romagnoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Communicated by Hans Pretzsch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamantini, S., Bergamasco, S., Portoghesi, L. et al. Detection, description, and technological properties of colour aberration in wood of standards and shoots from a chestnut (Castanea sativa Mill.) coppice stand. Eur J Forest Res 141, 683–698 (2022). https://doi.org/10.1007/s10342-022-01468-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-022-01468-2

Keywords

Navigation