Skip to main content

Phenological shifts compensate warming-induced drought stress in southern Siberian Scots pines

Abstract

Global climate change impacts the functioning and productivity of forest ecosystems at various spatiotemporal scales across a wide range of biomes. Although summer temperatures are considered the main driver of boreal tree growth, the importance of soil moisture availability is likely to rise with decreasing latitude and increasing warming. Here, we combine dendrochronological measurements with evidence from tree growth modeling and remote sensing to quantify the effect of climate on phenology and productivity of Scots pines (Pinus sylvestris L.) in southern Siberia. Between 1960 and 2017, pine ring widths along a latitudinal transect from 53° to 56°N were mainly controlled by the availability of summer soil moisture. This finding challenges the common belief that summer temperatures are the predominant growth control in boreal forests. Moreover, we show that earlier growing season onsets can compensate for warming-induced drought stress. Despite the phenotypic plasticity of Scots pines to adapt to warmer and drier conditions, we speculate that predicted climate change will likely exceed the species’ physiological tolerance in much of Eurasia’s forest-steppe by the end of the twenty-first century.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg (Ted) EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  2. Allen C, Breshears D, McDowell N (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:1–55. https://doi.org/10.1890/ES15-00203.1

    Article  Google Scholar 

  3. Anchukaitis KJ, Evans MN, Hughes MK, Vaganov EA (2020) An interpreted language implementation of the Vaganov–Shashkin tree-ring proxy system model. Dendrochronologia 60:125677. https://doi.org/10.1016/j.dendro.2020.125677

    Article  Google Scholar 

  4. Anisimov O, Anokhin Y, Boltneva L, Vaganov E, Gruza G, Zaitsev A, Zolotokrylin A, Izrael Y, Insarov G, Karol I, Kattsov V, Kobysheva N, Kostianoy A, Krenke A, Mescherskaya A, Mirvis V, Oganesyan V, Pchelkin A, Revich B, Reshetnikov A, Semenov V, Sirotenko O, Sporyshev P, Terziev F, Frolov I, Khon V, Tsyban A, Sherstyukov B, Shiklomanov I, Yasuk Anisimov V (2008) Assessment report on climate change and its consequences in Russian Federation. General Summary. Federal Service for Hydrometeorology and Environmental Monitoring (Roshydroment), Moscow, p. 24.

  5. Antonova GF, Stasova VV (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees 7:214–219. https://doi.org/10.1007/BF00202076

    Article  Google Scholar 

  6. Arzac A, Babushkina EA, Fonti P, Slobodchikova V, Sviderskaya IV, Vaganov EA (2018) Evidences of wider latewood in Pinus sylvestris from a forest-steppe of Southern Siberia. Dendrochronologia 49:1–8. https://doi.org/10.1016/j.dendro.2018.02.007

    Article  Google Scholar 

  7. Arzac A, Popkova M, Anarbekova A, Olano JM, Gutiérrez E, Nikolaev A, Shishov V (2019) Increasing radial and latewood growth rates of Larix cajanderi Mayr. and Pinus sylvestris L. in the continuous permafrost zone in Central Yakutia (Russia). Ann for Sci. https://doi.org/10.1007/s13595-019-0881-4

    Article  Google Scholar 

  8. Arzac A, Tabakova MA, Khotcisnkaia K, Koteneva A, Kirdyanov AV, Olano JM (2021) Linking tree growth and intra-annual density fluctuations to climate in suppressed and dominant Pinus sylvestris L. trees in the forest-steppe of Southern Siberia. Dendrochronologia. https://doi.org/10.1016/j.dendro.2021.125842

    Article  Google Scholar 

  9. Babushkina EA, Vaganov EA, Belokopytova LV, Shishov VV, Grachev AM (2015) Competitive strength effect in the climate response of scots pine radial growth in south-central Siberia forest-steppe. Tree-Ring Res 71:106–117. https://doi.org/10.3959/1536-1098-71.2.106

    Article  Google Scholar 

  10. Babushkina EA, Zhirnova DF, Belokopytova LV, Tychkov II, Vaganov EA, Krutovsky KV (2019) Response of four tree species to changing climate in a moisture-limited area of South Siberia. Forests. https://doi.org/10.3390/f10110999

    Article  Google Scholar 

  11. Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci USA 96:9701–9704. https://doi.org/10.1073/pnas.96.17.9701

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Bradshaw CJA, Warkentin IG (2015) Global estimates of boreal forest carbon stocks and flux. Glob Planet Change 128:24–30. https://doi.org/10.1016/j.gloplacha.2015.02.004

    Article  Google Scholar 

  13. ButtòV SV, Tychkov I, Popkova M, He M, Rossi S, Deslauriers A, Morin H (2020) Comparing the cell dynamics of tree-ring formation observed in microcores and as Predicted by the Vaganov–Shashkin model. Front Plant Sci 11:1–16. https://doi.org/10.3389/fpls.2020.01268

    Article  Google Scholar 

  14. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755. https://doi.org/10.1038/nature11688

    CAS  Article  PubMed  Google Scholar 

  15. Cook ER, Holmes R (1996) Guide for computer program ARSTAN,in: Grissino-Mayer HD, Holmes RL, Fritts HC (Eds.), The International Tree-Ring Data Bank Program Library Version 2.0 User’s Manual. Laboratory of Tree-Ring Research , University of Arizona, Tucson, USA, pp. 75–87

  16. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53

    Google Scholar 

  17. Duchemin B, Goubier J, Courrier G (1999) Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR Data. Remote Sens Environ 67(1):68–82

  18. Dye DG, Tucker CJ (2003) Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia. Geophys Res Lett 30:3–6. https://doi.org/10.1029/2002GL016384

    Article  Google Scholar 

  19. Fonti P, Babushkina EA (2016) Tracheid anatomical responses to climate in a forest-steppe in Southern Siberia. Dendrochronologia 39:32–41. https://doi.org/10.1016/j.dendro.2015.09.002

    Article  Google Scholar 

  20. Frank DC, Reichstein M, Bahn M, Thonicke K, David F, Mahecha MD, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell JG, Ciais P, Cramer W, Ibrom A, Miglietta F, Poulter B, Rammig A, Seneviratne SI, Walz A, Wattenbach M, Zavala MA, Zscheischler J (2015) Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob Chang Biol 21:2861–2880. https://doi.org/10.1111/gcb.12916

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Song Y, Vitasse Y, Zeng Z, Janssens IA, Huang M, Menzel A, Pen J (2015) Declining global warming effects on the phenology of spring leaf unfolding. Nature 526:104–107. https://doi.org/10.1038/nature15402

    CAS  Article  PubMed  Google Scholar 

  22. Furze ME, Huggett BA, Aubrecht DM, Stolz CD, Carbone MS, Richardson AD (2019) Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytol 221:1466–1477. https://doi.org/10.1111/nph.15462

    CAS  Article  PubMed  Google Scholar 

  23. Gates DM (2012) Biophysical ecology. Cour Corp

  24. Ganguly S, Friedl MA, Tan B, Zhang X, Verma M (2010) Land surface phenology from MODIS: characterization of the collection 5 global land cover dynamics product. Remote Sens Environ 114:1805–1816. https://doi.org/10.1016/j.rse.2010.04.005

    Article  Google Scholar 

  25. Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, de Jong R, Frank DC, Esper J, Büntgen U, Guo XJ, Bhatti J (2016) No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1610156113

    Article  PubMed  PubMed Central  Google Scholar 

  26. Grippa M, Kergoat L, Le Toan T, Mognard NM, Delbart N, L’Hermitte J, Vicente-Serrano SM (2005) The impact of snow depth and snowmelt on the vegetation variability over central Siberia. Geophys Res Lett 32:1–4. https://doi.org/10.1029/2005GL024286

    Article  Google Scholar 

  27. Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57:205–221

    Google Scholar 

  28. Groisman PY, Blyakharchuk TA, Chernokulsky AV, Arzhanov MM, Marchesini LB, Bogdanova G, Borzenkova II, Bulygina ON, Karpenko AA, Karpenko L, Knight R, Khoin VC, Korovin G, Meshcherskaya A, Mokhov I, Parfeonva E, Razuvaev V, Speranskaya N, Tchebakova N, Vygodskaya N (2012) Climate Changes in Siberia. In: Groisman P, Gutman G (Eds) Regional environmental changes in siberia and their global consequences. Springer Science + Business Media, pp 57–109. https://doi.org/10.1007/978-94-007-4569-8

  29. Gustafson EJ, Shvidenko AZ, Scheller RM (2011) Effectiveness of forest management strategies to mitigate effects of global change in south-central Siberia. Can J for Res 41:1405–1421. https://doi.org/10.1139/x11-065

    Article  Google Scholar 

  30. Hartmann FP, Rathgeber CBK, Fournier M, Moulia B (2017) Modelling wood formation and structure: power and limits of a morphogenetic gradient in controlling xylem cell proliferation and growth. Ann for Sci 74:14. https://doi.org/10.1007/s13595-016-0613-y

    Article  Google Scholar 

  31. He M, Yang B, Shishov V, Rossi S, Bräuning A (2018a) Relationships between wood formation and cambium phenology on the Tibetan Plateau during 1960–2014. Forests. https://doi.org/10.3390/f9020086

    Article  Google Scholar 

  32. He M, Yang B, Shishov V, Rossi S, Bräuning A (2018b) Projections for the changes in growing season length of tree-ring formation on the Tibetan Plateau based on CMIP5 model simulations. Int J Biometeorol 62:631–641

    Article  Google Scholar 

  33. Houghton RA, Butman D, Bunn AG, Krankina ON, Schlesinger P, Stone TA (2007) Mapping Russian forest biomass with data from satellites and forest inventories. Environ Res Lett. https://doi.org/10.1088/1748-9326/2/4/045032

    Article  Google Scholar 

  34. Huete A, Justice C, van Leeuwen W (1999) Modis vegetation index (MOD13): algorithm theoretical basis document, Version 3

  35. Jeong SJ, Ho CH, Gim HJ, Brown ME (2011) Phenology shifts at start versus end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob Change Biol 17:2385–2399. https://doi.org/10.1111/j.1365-2486.2011.02397.x

    Article  Google Scholar 

  36. Jevšenak J, Tychkov I, Gričar J, Levanič T, Tumajer J, Prislan P, Arnič D, Popkova M, Shishov VV (2020) Growth-limiting factors and climate response variability in Norway spruce (Picea abies L.) along an elevation and precipitation gradients in Slovenia. Int J Biometeorol. https://doi.org/10.1007/s00484-020-02033-5

    Article  PubMed  Google Scholar 

  37. Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, Hollinger DY, Munger JW, O’Keefe J, Schmid HP, Wing IS, Yang B, Richardson AD (2014) Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Change 4:598–604. https://doi.org/10.1038/nclimate2253

    CAS  Article  Google Scholar 

  38. Kharuk V, Im S, Oskorbin P, Petrov I, Ranson K (2013a) Siberian pine decline and mortality in southern Siberian mountains. For Ecol Manag 310:312–320. https://doi.org/10.1016/j.foreco.2013.08.042

    Article  Google Scholar 

  39. Kharuk VI, Ranson K, Oskorbin P, Im S, Dvinskaya M (2013b) Drought-caused forest decline in the Trans-Baikal Lake area. For Ecol Manag J 289:385–392. https://doi.org/10.1016/j.foreco.2012.10.024

    Article  Google Scholar 

  40. Kharuk VI, Im ST, Petrov IA, Golyukov AS, Ranson KJ, Yagunov MN (2017) Climate-induced mortality of Siberian pine and fir in the Lake Baikal Watershed. Siberia for Ecol Manag 384:191–199. https://doi.org/10.1016/j.foreco.2016.10.050

    Article  Google Scholar 

  41. Kirdyanov A, Hughes M, Vaganov EA, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees 17:61–69

    Article  Google Scholar 

  42. Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

    Article  Google Scholar 

  43. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen–Geiger climate classification updated. Meteorol Zeitschrif 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  44. Krankina ON, Harmon ME, Winjum JK (1996) Carbon storage and sequestration in the Russian forest sector. Ambio 25:284–288. https://doi.org/10.2307/4314475

    Article  Google Scholar 

  45. Krankina ON, Dixon RK, Kirilenko AP, Kobak KI (1997) Global climate change adaptation: examples from Russian boreal forests. Clim Change 36:197–215. https://doi.org/10.1007/978-1-4613-8471-7_31

    Article  Google Scholar 

  46. Menzel A, Sparks T, Estrella N, Koch E, Aasa A, Aha R, Alm-KKübler K, Bissolli P, Braslavská O, Briede A, Chmielewski F, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnellly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vlie A, Wielgolaski F-E, Zus A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  47. Menzel A, Yuan Y, Matiu M, Sparks T, Scheifinger H, Gehrig R, Estrella N (2020) Climate change fingerprints in recent European plant phenology. Glob Chang Biol 26:2599–2612. https://doi.org/10.1111/gcb.15000

    Article  Google Scholar 

  48. Myneni RB, Keelingt CD, Tucker CJ, Asrar G (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    CAS  Article  Google Scholar 

  49. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker C, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563. https://doi.org/10.1126/science.1082750

    CAS  Article  PubMed  Google Scholar 

  50. Peng S, Piao S, Ciais P, Fang J, Wang X (2010) Change in winter snow depth and its impacts on vegetation in China. Glob Chang Biol 16:3004–3013. https://doi.org/10.1111/j.1365-2486.2010.02210.x

    Article  Google Scholar 

  51. Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q, Janssens IA, Vicca S, Zeng Z, Jeong SJ, Li Y, Myneni RB, Peng S, Shen M, Peñuelas J (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun. https://doi.org/10.1038/ncomms7911

    Article  PubMed  PubMed Central  Google Scholar 

  52. Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X (2019) Plant phenology and global climate change: current progresses and challenges. Glob Change Biol 25(6):1922–1940. https://doi.org/10.1111/gcb.14619

    Article  Google Scholar 

  53. Reed B, Brown J, VanderZee D, Loveland T, Merchant J, Ohlen D (1994) Measuring phenological variability from satellite imagery. J Veg Sci 5:703–714

    Article  Google Scholar 

  54. Safonova A, Tabik S, Alcaraz-Segura D, Rubtsov A, Maglinets Y, Herrera F (2019) Detection of fir trees (Abies sibirica) damaged by the bark beetle in unmanned aerial vehicle images with deep learning. Remote Sens. https://doi.org/10.3390/rs11060643

    Article  Google Scholar 

  55. Schaaf CB, Gao F, Strahler AH, Lucht W, Li XW, Tsang T, Strugnell NC, Zhang X, Jin Y, Muller J-P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, Hu DRP, B, Liang S, Privette JL, Roy D, (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–148. https://doi.org/10.1016/S0034-4257(02)00091-3

    Article  Google Scholar 

  56. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351. https://doi.org/10.1111/j.1365-2486.2005.01097.x

    Article  Google Scholar 

  57. Shah SK, Touchan R, Babushkina E, Shishov VV, Meko DM, Abramenko OV, Belokopytova LV, Hordo M, Jevsenak J, Kedziora W, Kostyakova TV, Moskwa A, Oleksiak Z, Omurova G, Ovchinnikov S, Sadeghpour M, Saikia A, Zsewastynowicz L, Sidenko T, Strantsov A, Tamkeviciute M, Tomusiak R, Tychkov I (2015) August to July precipitation from tree rings in the forest-steppe zone of Central Siberia (Russia). Tree-Ring Res 71:37–44. https://doi.org/10.3959/1536-1098-71.1.37

    Article  Google Scholar 

  58. Shen M, Piao S, Cong N, Zhang G, Jassens IA (2015) Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob Chang Biol 21:3647–3656. https://doi.org/10.1111/gcb.12961

    Article  PubMed  Google Scholar 

  59. Shiklomanov AI, Lammers RB, Lettenmaier DP, Polischuk YM, Savichev OG, Smith LC, Chernokulsky AV (2013) Hydrological changes: historical analysis, contemporary status, and future projections. In: Groisman P, Gutman G (eds) Regional environmental changes in siberia and their global consequences. Springer Environmental Science and Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4569-8_4

  60. Shishov VV, Tychkov II, Popkova MI, Ilyin VA, Bryukhanova MV, Kirdyanov AV (2016) VS-oscilloscope: a new tool to parameterize tree radial growth based on climate conditions. Dendrochronologia 39:42–50. https://doi.org/10.1016/j.dendro.2015.10.001

    Article  Google Scholar 

  61. Shvidenko AZ, Gustafson E, Mcguire AD, Kharuk VI, Schepaschenko DG, Shugart HH, Tchebakova NM, Vygodskaya NN, Onuchin AA, Hayes DJ, Mccallum I, Maksyutov S, Mukhortova LV, Soja AJ, Belelli-marchesini L, Kurbatova JA, Oltchev AV, Parfenova EI, Shuman JK (2012) Regional environmental changes in siberia and their global consequences. In: Groisman P, Gutman G (Eds) Regional environmental changes in Siberia and Their global consequences. Springer Science + Business Media, pp. 171–249. https://doi.org/10.1007/978-94-007-4569-8

  62. Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugar HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin FS, Stackhouse PW (2007) Climate-induced boreal forest change: Predictions versus current observations. Glob Planet Change 56:274–296. https://doi.org/10.1016/j.gloplacha.2006.07.028

    Article  Google Scholar 

  63. Spinoni J, Vogt J, Barbosa P (2015) European degree-day climatologies and trends for the period 1951–2011. Int J Climatol 35:25–36. https://doi.org/10.1002/joc.3959

    Article  Google Scholar 

  64. Tabakova M, Arzac A, Martínez E, Kirdyanov A (2020) Climatic factors controlling Pinus sylvestris radial growth along a transect of increasing continentality in southern Siberia. Dendrochronologia. https://doi.org/10.1016/j.dendro.2020.125709

    Article  Google Scholar 

  65. Tchebakova NM, Parfenova EI, Korets MA, Conard SG (2016) Potential change in forest types and stand heights in central Siberia in a warming climate. Environ Res Lett 11:35016. https://doi.org/10.1088/1748-9326/11/3/035016

    Article  Google Scholar 

  66. Thornthwaite DW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94. https://doi.org/10.2307/210739

    Article  Google Scholar 

  67. Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science 349:814–818. https://doi.org/10.1126/science.aac6759

    CAS  Article  PubMed  Google Scholar 

  68. Tumajer J, Kašpar J, Kuželová H, Shishov VV, Tychkov II, Popkova MI, Vaganov EA, Treml V (2021) Forward modeling reveals multidecadal trends in cambial kinetics and phenology at treeline. Front Platn Sci 12:32. https://doi.org/10.3389/fpls.2021.613643

    Article  Google Scholar 

  69. Tychkov I, Sviderskaya IV, Babushkina EA, Popkova MI, Vaganov EA, Shishov VV (2019) How can the parameterization of a process-based model help us understand real tree-ring growth? Trees 33:345–357. https://doi.org/10.1007/s00468-018-1780-2

    CAS  Article  Google Scholar 

  70. Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings Images of past and future environments. Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1017/CBO9781107415324.004

    Book  Google Scholar 

  71. Wu C, Gonsamo A, Gough CM, Chen JM, Xu S (2014) Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS. Remote Sens Environ 147:79–88. https://doi.org/10.1016/j.rse.2014.03.001

    Article  Google Scholar 

  72. Yang B, He M, Shishov V, Tychkov I, Vaganov E, Rossi S (2017) New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc Natl Acad Sci 114:6966–6971. https://doi.org/10.1073/pnas.1616608114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Zeng Q, Rossi S, Yang B, Qin C, Li G (2020) Environmental drivers for cambial reactivation of Qilian junipers (Juniperus przewalskii) in a semi-arid region of northwestern China. Atmpsphere 11:1–312. https://doi.org/10.3390/atmos11030232

    Article  Google Scholar 

  74. Zhang X, Friedl MA, Schaaf CB, Strahler AH (2004) Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob Change Biol 10:1133–1145. https://doi.org/10.1111/j.1365-2486.2004.00784.x

    Article  Google Scholar 

  75. Zhang X, Friedl MA, Schaaf CB (2006) Global vegetation phenology from moderate resolution imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. J Geophys Res Biogeosci. https://doi.org/10.1029/2006JG000217

    Article  Google Scholar 

  76. Zhang Y, Williams AP, Gentine P (2020) Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat Clim Change 15:115. https://doi.org/10.1038/s41558-020-0806-0

    CAS  Article  Google Scholar 

  77. Zhou L, Kaufmann RK, Tian Y, Myneni RB, Tucker CJ (2003) Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J Geophys Res D Atmos. https://doi.org/10.1029/2002jd002510

    Article  Google Scholar 

  78. Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu Y, Liu R, Mao J, Pan Y, Peng S, Peuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang X, Wang Y, Xiao Z, Yang H, Zaehle S, Zeng N (2016) Greening of the earth and its drivers. Nat Clim Change 6:791–795. https://doi.org/10.1038/nclimate3004

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0014] and the Russian Science Foundation [Grant 18-74-10048]. We are indebted with E. Martínez for his assistance on field and samples preparation and with the  two National Parks and research station for allowing access to their territory. A previous version was revised by JM Olano. We thank to the anonymous reviewers for their comments and suggestions, which significantly improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alberto Arzac.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Peter Annighoefer.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 272 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arzac, A., Tychkov, I., Rubtsov, A. et al. Phenological shifts compensate warming-induced drought stress in southern Siberian Scots pines. Eur J Forest Res 140, 1487–1498 (2021). https://doi.org/10.1007/s10342-021-01412-w

Download citation

Keywords

  • Climate change
  • Drought stress
  • Forest decline
  • Phenology
  • Tree growth
  • Vaganov–Shashkin model