Genetic variability to assist in the delineation of provenance regions and selection of seed stands and gene conservation units of wild service tree (Sorbus torminalis (L.) Crantz) in southern Germany

Abstract

The conservation and sustainable use of forest genetic resources (FGR) in the face of the threat posed by climate change has become a challenging task for scientists and foresters. Genetic variability and diversity of FGR and forest reproductive material (FRM) will play a key role in forest adaptation under future environmental conditions. The need for protection of FGR has been widely discussed on the pan-European and national scales. However, at the national level, in some countries, the conservation and use of rare and scattered tree species FGR is overlooked or given low priority. Our study focuses on the delineation of provenance regions, selection of seed stands and gene conservation units of wild service tree in southern Germany. A total of 106 natural populations of wild service tree were screened based on demographic and phenotypic criteria. In order to represent the distribution range of wild service tree in southern Germany, 34 populations were selected for genetic analysis with eight variable microsatellite markers in Bavaria (BY) and Baden-Württemberg (BW). Results of AMOVA (analysis of molecular variance) showed that genetic variation is mainly distributed within populations (96%), while only a small amount occurred among them (FST = 0.04). The Mantel test indicated isolation by distance, and Bayesian clustering indicated the highest probability of four genetic clusters of wild service tree in southern Germany. Finally, 12 stands out of 34 were proposed as seed stands based on high-quality phenotypes and high genetic diversity (effective no. of alleles Ne ≥ 5.5). Five populations were proposed as gene conservation units, and seven forest stands were included in the list as potential future seed stands. Overall, assessment of genetic diversity should be applied in future to evaluate the level of genetic diversity of all selected seed stands. Our study thus presents a concept for delineation of provenance regions, selection of seed stands and gene conservation units based on demographic–phenotypic parameters and genetic markers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adamack AT, Gruber B (2014) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5(4):384–387. https://doi.org/10.1111/2041-210X.12158

    Article  Google Scholar 

  2. Alfaro RI, Fady B, Vendramin GG, Dawson IK, Fleming RA, Sáenz-Romero C, Skrøppa T (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For Ecol Manag 333:76–87. https://doi.org/10.1016/j.foreco.2014.04.006

    Article  Google Scholar 

  3. Angelone S, Hilfiker K, Holderegger R, Bergamini A, Hoebee SE (2007) Regional population dynamics define the local genetic structure in Sorbus torminalis. Mol Ecol 16(6):1291–1301. https://doi.org/10.1111/j.0962-1083.2006.03202.x

    CAS  PubMed  Article  Google Scholar 

  4. Aravanopoulos FA (2011) Genetic monitoring in natural perennial plant populations. J Bot 89(2):75–81. https://doi.org/10.1139/b10-087

    Article  Google Scholar 

  5. Aravanopoulos FA (2016) Conservation and monitoring of tree genetic resources in temperate forests. Curr For Rep 2(2):119–129. https://doi.org/10.1007/s40725-016-0038-8

    Article  Google Scholar 

  6. Aravanopoulos FA (2018) Do silviculture and forest management affect the genetic diversity and structure of long-impacted forest tree populations? Forests 9(6):355. https://doi.org/10.3390/f9060355

    Article  Google Scholar 

  7. Bauhus J, Forrester DI, Gardiner B, Jactel H, Vallejo R, Pretzsch H (2017) Ecological stability of mixed-species forests in mixed-species forests. Springer, Berlin

    Google Scholar 

  8. Bednorz L (2007) Conservation of genetic resources of Sorbus torminalis in Poland. Dendrobiology 58:3–7

    Google Scholar 

  9. Bednorz L, Kosiński P (2006) Genetic variability and structure of the wild service tree (Sorbus torminalis (L.) Crantz) in Poland. Silvae Genet 55(1–6):197–202. https://doi.org/10.1515/sg-2006-0027

    Article  Google Scholar 

  10. Biedenkopf S, Ammer C, Müller-Starck G (2007) Genetic aspects of seed harvests for the artificial regeneration of wild service tree (Sorbus torminalis (L) Crantz). New For (Dordr) 33(1):1. https://doi.org/10.1007/s11056-006-9009-4

    Article  Google Scholar 

  11. Blanc-Jolivet C, Degen B (2014) Using simulations to optimize genetic diversity in Prunus avium seed harvests. Tree Genet Genomes 10(3):503–512. https://doi.org/10.1007/s11295-014-0699-z

    Article  Google Scholar 

  12. Broadhurst L and Boshier D (2014) Seed provenance for restoration and management: conserving evolutionary potential and utility. Genetic considerations in ecosystem restoration using native tree species. A thematic study for the State of the World’s Forest Genetic Resources. United Nations Food and Agriculture Organization, Rome 27–37.

  13. Brown AH and Briggs JD (1991) Sampling Strategies for Genetic. Genetics and conservation of rare plants. Oxford University Press, New York pp. 99–119.

  14. Brown AH, Schoen DJ (1992) Plant population genetic structure and biological conservation. Conserv Biodivers Sustain Develop 5:88–104

    Google Scholar 

  15. BLE (Bundesanstalt für Landwirtschaft und Ernährung) (2013) Erfassung und Dokumentation genetischer Ressourcen seltener und gefährdeter Baumarten in Deutschland. Kurzfassung auf Grundlage der Abschlussberichte.

  16. Caballero A, Rodríguez-Ramilo ST, Avila V, Fernández J (2010) Management of genetic diversity of subdivided populations in conservation programmes. Conserv Genet 11(2):409–419. https://doi.org/10.1007/s10592-009-0020-0

    Article  Google Scholar 

  17. De Dato G, Teani A, Mattioni C, Marchi M, Monteverdi MC, Ducci F (2018) Delineation of seed collection zones based on environmental and genetic characteristics for Quercus suber L in Sardinia Italy. Iforest 11(5):651. https://doi.org/10.3832/ifor2572-011

    Article  Google Scholar 

  18. Demesure B, Le Guerroué B, Lucchi G, Prat D, Petit RJ (2000) Genetic variability of a scattered temperate forest tree Sorbus torminalis (Crantz). Ann For Sci 57(1):63–71. https://doi.org/10.1051/forest:2000101

    Article  Google Scholar 

  19. Demesure-Musch B, Oddou-Muratorio S (2004) EUFORGEN [European Forest Genetic Resources Programme] Technical Guidelines for genetic conservation and use for wild service tree (Sorbus torminalis). International Plant Genetic Resources Institute, Rome, Italy. 6 pages. https://www.bioversityinternational.org/fileadmin/user_upload/online_library/publications/pdfs/1039.pdf

  20. Dorren LK, Berger F, Imeson AC, Maier B, Rey F (2004) Integrity, stability and management of protection forests in the European Alps. For Ecol Manag 195(1–2):165–176. https://doi.org/10.1016/j.foreco.2004.02.057

    Article  Google Scholar 

  21. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  22. Earl DA, Von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  23. Eriksson G (2001) Conservation of noble hardwoods in Europe. Can J For Res 31(4):577–587. https://doi.org/10.1139/x00-134

    Article  Google Scholar 

  24. Eriksson G, Namkoong G, Roberds JH (1993) Dynamic gene conservation for uncertain futures. For Ecol Manag 62(1–4):15–37. https://doi.org/10.1016/0378-1127(93)90039-P

    Article  Google Scholar 

  25. EUFORGEN (2008). Scattered Broadleaves Network. Summary of the third meeting. Drøbak, Norway, 20–22 May 2008

  26. European Union (EU) directive 1999/105/CE of 22 December (1999) Marketing of forest reproductive material. Access to European Union law web. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31999L0105. Accessed 26 October 2018

  27. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    CAS  Article  Google Scholar 

  28. Falk DA (1991) Joining biological and economic models for conserving plant genetic diversity. Genetics and conservation of rare plants, 209–223.

  29. FAO (2014) The State of the World’s Forest Genetic Resources. Rome. http://www.fao.org/forestry/fgr/64582/en/. Accessed 26 October 2018

  30. Finkeldey R, Ziehe M (2004) Genetic implications of silvicultural regimes. For Ecol Manag 197:231–244

    Article  Google Scholar 

  31. FoVG (2003) Forstvermehrungsgutgesetz (FoVG) (The German Act on Forest Reproductive Material) 01.01.2003. https://www.ble.de/DE/Themen/Wald-Holz/Forstliches-Vermehrungsgut/forstliches-vermehrungsgut_node.html. Accessed 27 October 2018

  32. Fussi B, Westergren M, Aravanopoulos F, Baier R, Kavaliauskas D, Finzgar D, Alizoti P, Bozic G, Avramidou E, Konnert M, Kraigher H (2016) Forest genetic monitoring: an overview of concepts and definitions. Environ Monit Assess 188(8):493. https://doi.org/10.1007/s10661-016-5489-7

    PubMed  PubMed Central  Article  Google Scholar 

  33. Geburek T, Konrad H (2008) Why the conservation of forest genetic resources has not worked. Conserv Biol 22(2):267–274. https://doi.org/10.1111/j.1523-1739.2008.00900.x

    PubMed  Article  Google Scholar 

  34. Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96(8):1069–1076

    CAS  Article  Google Scholar 

  35. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). University of Lausanne, Lausanne

    Google Scholar 

  36. Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5(1):184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x

    Article  Google Scholar 

  37. Graudal L, Aravanopoulos F, Bennadji Z, Changtragoon S, Fady B, Kjær ED, Vendramin GG (2014) Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. For Ecol Manag 333:35–51. https://doi.org/10.1016/j.foreco.2014.05.002

    Article  Google Scholar 

  38. Guillot G (2008) Inference of structure in subdivided populations at low levels of genetic differentiation. the correlated allele frequencies model revisited. Bioinformatics 24:2222–2228. https://doi.org/10.1093/bioinformatics/btn419

    CAS  PubMed  Article  Google Scholar 

  39. Guillot G, Santos F (2010) Using AFLP markers and the Geneland program for the inference of population genetic structure. Mol Ecol Resour 10(6):1082–1084. https://doi.org/10.1111/j.1755-0998.2010.02864.x

    CAS  PubMed  Article  Google Scholar 

  40. Guillot G, Estoup A, Mortier F, Cosson JF (2005a) A spatial statistical model for landscape genetics. Genetics 170(3):1261–1280. https://doi.org/10.1534/genetics.104.033803

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Guillot G, Mortier F, Estoup A (2005b) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5(3):712–715. https://doi.org/10.1111/j.1471-8286.2005.01031.x

    CAS  Article  Google Scholar 

  42. Guillot G, Santos F, Estoup A (2008) Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24(11):1406–1407. https://doi.org/10.1093/bioinformatics/btn136

    CAS  PubMed  Article  Google Scholar 

  43. Guries RP, Ledig FT (1979) Genetic structure of populations and differentiation in forest trees. In: Conkle, M. T. (1981). Proceedings of the Symposium on Isozymes of North American Forest Trees and Forest Insects, July 27, 1979, Berkeley, California (Vol. 48). US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station. pp 42–47

  44. Hattemer HH (1995) Concepts and requirements in the conservation of forest genetic resources. Forest Genetics 2(3):125–134

    Google Scholar 

  45. Hemery GE, Clark JR, Aldinger E, Claessens H, MalvoltiO’connor MEE, Brus R (2010) Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry 83(1):65–81. https://doi.org/10.1093/forestry/cpp034

    Article  Google Scholar 

  46. Hosius B, Leinemann L, Konnert M, Bergmann F (2006) Genetic aspects of forestry in the Central Europe. Eur J For Res 125(4):407–417. https://doi.org/10.1007/s10342-006-0136-4

    Article  Google Scholar 

  47. Hoebee SE, Menn C, Rotach P, Finkeldey R, Holderegger R (2006) Spatial genetic structure of Sorbus torminalis: the extent of clonal reproduction in natural stands of a rare tree species with a scattered distribution. For Ecol Manag 226(1–3):1–8. https://doi.org/10.1016/j.foreco.2005.12.024

    Article  Google Scholar 

  48. Hufford KM, Veneklaas EJ, Lambers H, Krauss SL (2016) Genetic delineation of local provenance defines seed collection zones along a climate gradient. AoB Plants 8:343

    Article  Google Scholar 

  49. Hughes RA, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623. https://doi.org/10.1111/j.1461-0248.2008.01179.x

    PubMed  Article  Google Scholar 

  50. Hughes CE. and Robbins AMJ (1982). Seed stand establishment procedures for Pinus oocarpa and Pinus caribaea var. hondurensis in the natural forests of Central America. The Commonwealth Forestry Review, 107–113. https://www.jstor.org/stable/42608628

  51. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281. https://doi.org/10.7717/peerj.281

    PubMed  PubMed Central  Article  Google Scholar 

  52. Kavaliauskas D, Fussi B, Westergren M, Aravanopoulos F, Finzgar D, Baier R, Kraigher H (2018) The interplay between forest management practices, genetic monitoring, and other long-term monitoring systems. Forests 9(3):133. https://doi.org/10.3390/f9030133

    Article  Google Scholar 

  53. Kleinschmit JR, Kownatzki D, Gregorius HR (2004) Adaptational characteristics of autochthonous populations—consequences for provenance delineation. For Ecol Manag 197(1–3):213–224. https://doi.org/10.1016/j.foreco.2004.05.037

    Article  Google Scholar 

  54. Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127(2):89–101. https://doi.org/10.1007/s10342-007-0186-2

    Article  Google Scholar 

  55. Koskela J, Lefèvre F, Schueler S, Kraigher H, Olrik DC, Hubert J, Rotach P (2013) Translating conservation genetics into management: Pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biol Conserv 157:39–49. https://doi.org/10.1016/j.biocon.2012.07.023

    Article  Google Scholar 

  56. Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Kuparinen A (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15(4):378–392. https://doi.org/10.1111/j.1461-0248.2012.01746.x

    PubMed  PubMed Central  Article  Google Scholar 

  57. Kučerova V, Honec M, Paule L, Zhelev P, Gömöry D (2010) Genetic differentiation of Sorbus torminalis in Eastern Europe as determined by microsatellite markers. Biologia 65(5):817–821. https://doi.org/10.2478/s11756-010-0082-y

    CAS  Article  Google Scholar 

  58. Kunz J, Räder A, Bauhus J (2016) Effects of drought and rewetting on growth and gas exchange of minor European broadleaved tree species. Forests 7:239. https://doi.org/10.3390/f7100239

    Article  Google Scholar 

  59. Lande R (1988) Genetics and demography in biological conservation. Science 241(4872):1455–1460. https://doi.org/10.1126/science.3420403

    CAS  PubMed  Article  Google Scholar 

  60. Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108

    Article  Google Scholar 

  61. Ledig FT (1986) Conservation strategies for forest gene resources. For Ecol Manag 14(2):77–90. https://doi.org/10.1016/0378-1127(86)90093-9

    Article  Google Scholar 

  62. Lefèvre F (2004) Human impacts on forest genetic resources in the temperate zone: an updated review. For Ecol Manag 197(1):257–271. https://doi.org/10.1016/j.foreco.2004.05.017

    Article  Google Scholar 

  63. Lefèvre F, Koskela J, Hubert J, Kraigher H, Longauer R, Olrik DC, Baldwin C (2013) Dynamic conservation of forest genetic resources in 33 European countries. Conserv Biol 27(2):373–384. https://doi.org/10.1111/j.1523-1739.2012.01961.x

    PubMed  Article  Google Scholar 

  64. Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17(4):183–189. https://doi.org/10.1016/S0169-5347(02)02497-7

    Article  Google Scholar 

  65. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh). Mol Breed 10(4):217–241. https://doi.org/10.1023/A:1020525906332

    CAS  Article  Google Scholar 

  66. Liesebach M, Schneck V (2016) Ist die Einteilung der forstlichen Herkunftsgebiete in Deutschland noch zeitgemäß? In: Liesebach M (ed) (2016) Forstgenetik und Naturschutz: 5. Tagung der Sektion Forstgenetik/Forstpflanzenzüchtung am 15./16. Juni 2016 in Chorin; Tagungsband. Braunschweig: Johann Heinrich von Thünen-Institut, 95 p, Thünen Rep 45, https://doi.org/10.3220/REP1481033372000. pp 15–20. https://www.econstor.eu/bitstream/10419/148411/1/874313279.pdf

  67. Marshall DR, Brown AHD (1975) Optimum sampling strategies in genetic conservation. In: Frankel OH, Hawkes JG (Eds) Crop genetic resources for today and tomorrow (International Biological Programme 2) London: Cambridge University Press. pp 53–80. http://hdl.handle.net/102.100.100/308259?index=1

  68. Mataruga M, Piotti A, Daničić V, Cvjetković B, Fussi B, Konnert M, Aleksić JM (2020) Towards the dynamic conservation of Serbian spruce (Picea omorika) western populations. Ann For Sci 77(1):1. https://doi.org/10.1007/s13595-019-0892-1

    Article  Google Scholar 

  69. McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?”—a review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13(3):432–440. https://doi.org/10.1111/j.1526-100X.2005.00058.x

    Article  Google Scholar 

  70. Namkoong GENE (1984) A control concept of gene conservation. Silvae Genet 33(4–5):160–463

    Google Scholar 

  71. Neel MC, Cummings MP (2003) Effectiveness of conservation targets in capturing genetic diversity. Conserv Biol 17(1):219–229. https://doi.org/10.1046/j.1523-1739.2003.01352.x

    Article  Google Scholar 

  72. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70(12):3321–3323. https://doi.org/10.1073/pnas.70.12.3321

    CAS  PubMed  Article  Google Scholar 

  73. Oddou-Muratorio S, Aligon C, Decroocq S, Plomion C, Lamant T, Mush-Demesure B (2001) Microsatellite primers for Sorbus torminalis and related species. Mol Ecol Notes 1(4):297–299. https://doi.org/10.1046/j.1471-8278.2001.00116.x

    CAS  Article  Google Scholar 

  74. Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29(2):294–307. https://doi.org/10.1590/S1415-47572006000200018

    CAS  Article  Google Scholar 

  75. Paganová V (2007) Ecology and distribution of Sorbus torminalis (L) Crantz in Slovakia. Hortic Sci 34(4):138–151

    Article  Google Scholar 

  76. Paganová V (2008) Ecological requirements of wild service tree (Sorbus torminalis (L) Crantz) and service tree (Sorbus domestica L) in relation with their utilization in forestry and landscape. J For Sci 54(5):216–226

    Article  Google Scholar 

  77. Peakall R, Smouse PE (2012a) GenAlEx 6.5: genetic analysis in excel. population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Peakall R, Smouse PE (2012b) genalex tutorials-part 2: Genetic distance and analysis of molecular variance (AMOVA). Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Peakall R, Smouse PE (2012c) GenAlEx tutorials-part 3: spatial genetic analysis. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Petit RJ, Elmousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12(4):844–855. https://doi.org/10.1111/j.1523-1739.1998.96489.x

    Article  Google Scholar 

  81. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214. https://doi.org/10.1146/annurev.ecolsys.37.091305.110215

    Article  Google Scholar 

  82. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pyttel P, Kunz J, Bauhus J (2013) Growth, regeneration and shade tolerance of the wild service tree (Sorbus torminalis (L) Crantz) in aged oak coppice forests. Trees 27(6):1609–1619

    Article  Google Scholar 

  84. Rajora OP, Mosseler A (2001) Challenges and opportunities for conservation of forest genetic resources. Euphytica 118(2):197–212. https://doi.org/10.1023/A:1004150525384

    Article  Google Scholar 

  85. Rajora OP, Rahman MH, Buchert GP, Dancik BP (2000) Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario. Canada Mol Ecol 9(3):339–348. https://doi.org/10.1046/j.1365-294x.2000.00886.x

    CAS  PubMed  Article  Google Scholar 

  86. Rasmussen KK, Kollmann J (2008) Low genetic diversity in small peripheral populations of a rare European tree (Sorbus torminalis) dominated by clonal reproduction. Conserv Genet 9(6):1533–1539. https://doi.org/10.1007/s10592-007-9492-y

    Article  Google Scholar 

  87. Ratnam W, Rajora PO, Finkeldey R, Aravanopoulos F, Bouvet JM, Vaillancourt RE, Kanashiro M, Fady B, Tomita M, Vinson C (2014) Genetic effects of forest management practices: Global synthesis and perspectives. For Ecol Manag 333:52–65. https://doi.org/10.1016/j.foreco.2014.06.008

    Article  Google Scholar 

  88. Rotach P (1999) In situ conservation and promotion of Noble Hardwoods: silvicultural management strategies in noble hardwoods network report of the third meeting, 13–16 June 1998, Sagadi Estonia. International Plant Genetic Resources Institute, Rome, pp 91–100

    Google Scholar 

  89. Schierup MH, Christiansen FB (1996) Inbreeding depression and outbreeding depression in plants. Heredity 77(5):461. https://doi.org/10.1038/hdy.1996.172

    Article  Google Scholar 

  90. Schneider S, Roessli D, Excoffier L (2000) Arlequin Version 2000: a software for population genetics data analysis genetics and biometry laboratory. University of Geneva, Switzerland

    Google Scholar 

  91. Šeho M, Kavaliauskas D, Kleinschmit JRG, Karopka M, Fussi B (2018) Wild Service Tree-importance and installation of provenance tests in the face of climate change. Allg Forst- u. J.-Ztg. 189(3/4), 41–57. https://doi.org/10.23765/afjz0002020

    Article  Google Scholar 

  92. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9(5):615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x

    Article  Google Scholar 

  93. Spiecker H (2006) Minority tree species–a challenge for multi-purpose forestry. nature based forestry in central Europe. alternative to industrial forestry and strict preservation. Studia Forestalia Slovenica 126:47–59

    Google Scholar 

  94. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    CAS  Article  Google Scholar 

  95. Wang ML, Barkley NA, Jenkins TM (2009) Microsatellite markers in plants and insects Part I: applications of biotechnology. G3 Genes, Genomes, Genetics 3(1):54–67

    Google Scholar 

  96. Welk E, De Rigo D, Caudullo G (2016) Sorbus torminalis in Europe: distribution, habitat, usage and threats. In: San Miguel-Ayanz J, De Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publ Off EU, Luxembourg

    Google Scholar 

  97. Ziehe M, Gregorius HR, Glock H, Hattemer HH, Herzog S (1989) Gene resources and gene conservation in forest trees: general concepts in genetic effects of air pollutants in forest tree populations. Springer, Berlin, pp 173–185

    Google Scholar 

Download references

Acknowledgements

We are deeply thankful to private forest owners for collaboration and permission to access their forest stands and to the state forest control officers Gert Günzelmann (BY), Erich Lang (BY), Anton Paulus (BY), Michael Luckas (BY), Matthias Wieners (BW) and Rainer Schmid (BW) for assistance with phenotypic stand evaluation and sampling. We thank Susanne Nowak for technical assistance in lab work.

Funding

The study was funded by the Bavarian Ministry of Food, Agriculture and Forestry, project—“Erarbeitung von Herkunftsempfehlungen und Verbesserung der Erntebasis für die seltene, klimatolerante Baumart Elsbeere (S. torminalis L.) in Bayern und in Baden-Württemberg” (Project No. ST 323). Data from the project “Bundesanstalt für Landwirtschaft und Ernährung (2013): Erfassung und Dokumentation genetischer Ressourcen seltener und gefährdeter Baumarten in Deutschland” were used for selection of stands to be visited by state forest control officers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Darius Kavaliauskas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Oliver Gailing.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 763 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kavaliauskas, D., Šeho, M., Baier, R. et al. Genetic variability to assist in the delineation of provenance regions and selection of seed stands and gene conservation units of wild service tree (Sorbus torminalis (L.) Crantz) in southern Germany. Eur J Forest Res (2021). https://doi.org/10.1007/s10342-020-01352-x

Download citation

Keywords

  • Provenance regions
  • Forest genetic resources
  • Genetic diversity
  • Forest reproductive material