Influencing plantation stand structure through close-to-nature silviculture

Abstract

New silvicultural practices to meet the requirements of ecosystem-based forest management are being adopted operationally, even if the long-term outcomes remain unknown. In eastern Quebec, Canada, the conversion of plantations from even-aged to irregular or uneven-aged stands is being carried out in 10% of commercial thinning operations. Existing growth and yield simulators cannot be used to forecast stand development. Here we apply a novel individual tree-level simulator to plantations characterized by high levels of natural regeneration ingrowth, such as those observed in Quebec. The simulator user can either choose distance-dependent or distance-independent competition indices, depending on user preference or simulation needs. Calibration statistics and validation results indicate that both versions perform very well. When applied to operational silvicultural scenarios, the simulator shows that thinning does not influence total stand yield; however, tree spatial aggregation does change. Moreover, the variability among the different simulation runs is greater for spatial statistics than for stand yield. Overall, thinning from below has the greatest effect on stand structure, whereas the smallest is from early crop tree release, used as the initial conversion step. This pattern implies that the first and second thinnings of the conversion process towards irregular or uneven-aged stands may not have a major effect on stand structure. In the case of the conversion process, the consequences for stand structure must thus be viewed as a longer-term issue. More importantly, the conversion process does not reduce stand yield, thereby reducing one of the key concerns of forest managers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Baddeley AJ, Turner R (2004) Spatstat: an R package for analysing spatial point patterns. University of Western Australia, Department of Mathematics and Statistics

  2. Barrette M, Leblanc M, Thiffault N et al (2014) Issues and solutions for intensive plantation silviculture in a context of ecosystem management. For Chron 90:748–762. https://doi.org/10.5558/tfc2014-147

    Article  Google Scholar 

  3. Barrette M, Thiffault N, Tremblay J-P, Auger I (2019) Balsam fir stands of northeastern North America are resilient to spruce plantation. For Ecol Manag 450:117504

    Article  Google Scholar 

  4. Bergeron DH, Pekins PJ, Jones HF, Leak WB (2011) Moose browsing and forest regeneration: a case study in Northern New Hampshire. Alces J Devoted Biol Manag Moose 47:39–51

    Google Scholar 

  5. Bérubé-Deschênes A, Franceschini T, Schneider R (2017a) Quantifying competition in white spruce (Picea glauca) plantations. Ann For Sci 74:15. https://doi.org/10.1007/s13595-017-0624-3

    Article  Google Scholar 

  6. Bérubé-Deschênes A, Franceschini T, Schneider R (2017b) Quantifying competition in white spruce (Picea glauca) plantations. Ann For Sci 74(2):26

    Article  Google Scholar 

  7. Biging GS, Dobbertin M (1995) Evaluation of competition indices in individual tree growth models. For Sci 41:360–377

    Google Scholar 

  8. Boivin F, Paquette A, Papaik MJ et al (2010) Do position and species identity of neighbours matter in 8–15-year-old post harvest mesic stands in the boreal mixedwood? For Ecol Manag 260:1124–1131. https://doi.org/10.1016/j.foreco.2010.06.037

    Article  Google Scholar 

  9. Boivin-Dompierre S, Achim A, Pothier D (2017) Functional response of coniferous trees and stands to commercial thinning in eastern Canada. For Ecol Manag 384:6–16

    Article  Google Scholar 

  10. Borchers HW (2018) pracma: Practical Numerical Math Functions. Version 2.1.4. https://CRAN.R-project.org/package=pracma

  11. Bose AK, Harvey BD, Brais S et al (2014) Constraints to partial cutting in the boreal forest of Canada in the context of natural disturbance-based management: a review. For Int J For Res 87:11–28. https://doi.org/10.1093/forestry/cpt047

    Article  Google Scholar 

  12. Boucher Y, Arseneault D, Sirois L (2006) Logging-induced change (1930–2002) of a preindustrial landscape at the northern range limit of northern hardwoods, eastern Canada. Can J For Res 36:505–517. https://doi.org/10.1139/x05-252

    Article  Google Scholar 

  13. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  14. Burns RM, Honkala BH (Technical C (1990) Silvics of North America. Volume 1. Conifers. vi + 675 pp.

  15. Ceriani L, Verme P (2012) The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini. J Econ Inequal 10:421–443

    Article  Google Scholar 

  16. Chai Z (2019) forestSAS: Forest Spatial Structure Analysis Systems. R Package Version 101

  17. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453. https://doi.org/10.2307/1931034

    Article  Google Scholar 

  18. Contreras MA, Affleck D, Chung W (2011) Evaluating tree competition indices as predictors of basal area increment in western Montana forests. For Ecol Manag 262:1939–1949. https://doi.org/10.1016/j.foreco.2011.08.031

    Article  Google Scholar 

  19. CRÉBSL (2010) Plan régional de développement intégré des ressources et du territoire (PRDIRT) du Bas-Saint-Laurent. Conférence Régionale des Élus du Bas-Saint-Laurent (CRÉBSL), Rimouski, QC

  20. Crookston NL, Dixon GE (2005) The forest vegetation simulator: a review of its structure, content, and applications. Comput Electron Agric 49:60–80. https://doi.org/10.1016/j.compag.2005.02.003

    Article  Google Scholar 

  21. D’Amato AW, Troumbly SJ, Saunders MR et al (2011) Growth and survival of Picea glauca following thinning of plantations affected by eastern spruce budworm. North J Appl For 28:72–78

    Article  Google Scholar 

  22. D’Orangeville L, Houle D, Duchesne L et al (2018) Beneficial effects of climate warming on boreal tree growth may be transitory. Nat Commun 9:1–10

    Article  CAS  Google Scholar 

  23. Daniels RF, Burkhart HE, Clason TR (1986) A comparison of competition measures for predicting growth of loblolly pine trees. Can J For Res 16:1230–1237. https://doi.org/10.1139/x86-218

    Article  Google Scholar 

  24. Danneyrolles V, Dupuis S, Fortin G et al (2019) Stronger influence of anthropogenic disturbance than climate change on century-scale compositional changes in northern forests. Nat Commun 10:1265. https://doi.org/10.1038/s41467-019-09265-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Direction des inventaires forestiers (2015) Normes de stratification écoforestière. Quatrième inventaire écoforestier du Québec méridional. Ministères For Faune Parcs 101 P. https://mffp.gouv.qc.ca/forets/inventaire/pdf/norme-stratification.pdf

  26. Duchateau E, Schneider R, Tremblay S, et al (Submitted) Modeling the spatial structure of white spruce plantations and their changes with various thinning treatments. Forests

  27. Duchateau E, Schneider R, Tremblay S, Dupont-Leduc L (2020) Density and diameter distributions of saplings in naturally regenerated and planted coniferous stands in Québec after various approaches of commercial thinning. Ann For Sci 77:38. https://doi.org/10.1007/s13595-020-0929-5

    Article  Google Scholar 

  28. Dufour-Kowalski S, Courbaud B, Dreyfus P et al (2012) Capsis: an open software framework and community for forest growth modelling. Ann For Sci 69:221–233

    Article  Google Scholar 

  29. Dupont-Leduc L (2017) Comparaison de l’accroissement ligneux entre l’éclaircie commerciale par dégagement d’arbres-élites et l’éclaircie par le bas. M.Sc. Thesis, Université du Québec à Rimouski

  30. Dupont-Leduc L, Schneider R, Sirois L (2020) Preliminary results from a structural conversion thinning trial in Eastern Canada. J For 118:515–533

    Google Scholar 

  31. Eid T, Tuhus E (2001) Models for individual tree mortality in Norway. For Ecol Manag 154:69–84

    Article  Google Scholar 

  32. Fortin M (2014) Using a segmented logistic model to predict trees to be harvested in forest growth forecasts. For Syst 23:139–152

    Google Scholar 

  33. Fortin M, Langevin L (2010) ARTÉMIS-2009: un modèle de croissance basé sur une approche par tiges individuelles pour les forêts du Québec. Mém Rech For N° 156 Ministère Ressour Nat Faune Dir Rech For Gouv Qué

  34. Fortin M, Bédard S, DeBlois J (2009) SaMARE: un modèle par tiges individuelles destiné à la prévision de la croissance des érablières de structure inéquienne du Québec méridional. Ministère des Ressources naturelles et de la Faune, Direction de la recherche forestière, Québec

  35. Gagné L, Lavoie L, Binot J-M (2012) Croissance et propriétés mécaniques du bois après éclaircie commerciale dans une plantation d’épinette blanche (Picea glauca) âgée de 32 ans. Can J For Res 42:291–302. https://doi.org/10.1139/x11-181

    Article  Google Scholar 

  36. Gagné L, Sirois L, Lavoie L (2016) Comparaison du volume et de la valeur des bois résineux issus d’éclaircies par le bas et par dégagement d’arbres-élites dans l’Est du Canada. Can J For Res 46:1320–1329

    Article  Google Scholar 

  37. Gagné L, Sirois L, Lavoie L (2019) Seed rain and seedling establishment of Picea glauca and Abies balsamea after partial cutting in plantations and natural stands. Forests 10:221

    Article  Google Scholar 

  38. Gagnon L, St-Hilaire G, Rioux M (2015) Sommaire du plan d’aménagement forestier intégré tactique: Région du Bas-Saint-Laurent UA 011-51. Ministère des ressources naturelles, Direction générale du Bas-Saint-Laurent

  39. Getzin S, Dean C, He F et al (2006) Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography 29:671–682. https://doi.org/10.1111/j.2006.0906-7590.04675.x

    Article  Google Scholar 

  40. Greene DF, Kneeshaw DD, Messier C et al (2002) Modelling silvicultural alternatives for conifer regeneration in boreal mixedwood stands (aspen/white spruce/balsam fir). Chron 78:281–295

    Article  Google Scholar 

  41. Hann DW, Marshall DD, Hanus ML (2003) Equations for predicting height-to-crown-base, 5-year diameter-growth rate, 5-year height-growth rate, 5-year mortality rate, and maximum size-density trajectory for Douglas-fir and western hemlock in the coastal region of the Pacific Northwest

  42. Hennig C (2018) fpc: Flexible Procedures for Clustering. Version 2.1-11. https://CRAN.R-project.org/package=fpc

  43. Hilmers T, Biber P, Knoke T, Pretzsch H (2020) Assessing transformation scenarios from pure Norway spruce to mixed uneven-aged forests in mountain areas. Eur J For Res. https://doi.org/10.1007/s10342-020-01270-y

    Article  Google Scholar 

  44. Laflèche V, Larouche C, Guillemette F (2013) L’éclaircie commerciale. In: Le guide sylvicole du Québec. Ministère des ressources naturelles, pp 300–327

  45. Lefort S, Massé S (2015) Plan de gestion de l’orignal au Québec 2012–2019. Ministère des Forêts, de la Faune et des Parcs, Secteur de la faune et des parcs, Direction générale de l’expertise sur la faune et ses habitats et Direction générale du développement de la faune

  46. MacDonald GB, Cherry ML, Thompson DJ (2004) Effect of harvest intensity on development of natural regeneration and shrubs in an Ontario boreal mixedwood stand. For Ecol Manag 189:207–222. https://doi.org/10.1016/j.foreco.2003.08.010

    Article  Google Scholar 

  47. Man R, Kayahara GJ, Rice JA, MacDonald GB (2008) Eleven-year responses of a boreal mixedwood stand to partial harvesting: light, vegetation, and regeneration dynamics. For Ecol Manag 255:697–706. https://doi.org/10.1016/j.foreco.2007.09.043

    Article  Google Scholar 

  48. Martin GL, Ek AR (1984) A comparison of competition measures and growth models for predicting plantation red pine diameter and height growth. For Sci 30:731–743

    Google Scholar 

  49. Martin GL, Ek AR, Monserud RA (1977) Control of plot edge bias in forest stand growth simulation models. Can J For Res 7:100–105. https://doi.org/10.1139/x77-014

    Article  Google Scholar 

  50. McAfee B, Malouin C (2008) Implementing ecosystem-based management approaches in Canada’s forests. Nat Resour Can

  51. Medhurst JL, Beadle CL (2001) Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations. Tree Physiol 21:989–999

    Article  CAS  Google Scholar 

  52. Mehtätalo L, Peltola H, Kilpeläinen A, Ikonen V-P (2014) The response of basal area growth of scots pine to thinning: a longitudinal analysis of tree-specific series using a nonlinear mixed-effects model. For Sci 60:636–644

    Article  Google Scholar 

  53. Monserud RA, Sterba H (1999) Modeling individual tree mortality for Austrian forest species. For Ecol Manag 113:109–123

    Article  Google Scholar 

  54. Monserud RA, Sterba H, Hasenauer H (1997) The single-tree stand growth simulator PROGNAUS. In: Proceedings: Forest Vegetation Simulator Conference, pp 50–56

  55. Montoro Girona M, Morin H, Lussier J-M, Walsh D (2016) Radial growth response of black spruce stands ten years after experimental shelterwoods and seed-tree cuttings in boreal forest. Forests 7:240. https://doi.org/10.3390/f7100240

    Article  Google Scholar 

  56. Othmani A, Piboule A, Krebs M et al (2011) Towards automated and operational forest inventories with T-Lidar. SilviLaser, Hobart

    Google Scholar 

  57. Pelletier G, Pitt DG (2008) Silvicultural responses of two spruce plantations to midrotation commercial thinning in New Brunswick. Can J For Res 38:851–867

    Article  Google Scholar 

  58. Pinheiro J, Bates D, DebRoy S, Sarkar D (2014) R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-117. See HttpCRAN R-Proj Orgpackage Nlme

  59. Porté A, Bartelink HH (2002) Modelling mixed forest growth: a review of models for forest management. Ecol Model 150:141–188. https://doi.org/10.1016/S0304-3800(01)00476-8

    Article  Google Scholar 

  60. Pothier D, Auger I (2011) NATURA-2009: un modèle de prévision de la croissance à l’échelle du peuplement pour les forêts du Québec. Ministère des Ressources naturelles et de la Faune, Direction de la recherche forestière

  61. Power H, Auger I (2018) Comparaison des prévisions à court et à long terme d’un modèle de croissance à l’échelle du peuplement avec celles d’un modèle à l’échelle de l’arbre. For Chron 94:47–60

    Article  Google Scholar 

  62. Prégent G, Picher G, Auger I (2010) Tarif de cubage, tables de rendement et modèles de croissance pour les plantations d’épinette blanche au Québec

  63. Pretzsch H (1997) Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-larch stands in Lower Saxony. For Ecol Manag 97:237–253

    Article  Google Scholar 

  64. Pretzsch H (2009) Forest dynamics, growth and yield. Springer, Berlin

    Google Scholar 

  65. Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162:3–21. https://doi.org/10.1016/S0378-1127(02)00047-6

    Article  Google Scholar 

  66. Pretzsch H, Bielak K, Block J et al (2013) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J For Res 132:263–280. https://doi.org/10.1007/s10342-012-0673-y

    Article  Google Scholar 

  67. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  68. Riopel M (2012) Étude de coupes avec protection des petites tiges marchandes (CPPTM) 5 et 10 ans après traitement: probabilités de pertes, distribution de la régénération et probabilités d’insolation hivernale

  69. Robinson AP (2016) equivalence: Provides Tests and Graphics for Assessing Tests of Equivalence. R Package Version 072 HttpsCRANR-Proj

  70. Robinson AP, Duursma RA, Marshall JD (2005) A regression-based equivalence test for model validation: shifting the burden of proof. Tree Physiol 25:903–913. https://doi.org/10.1093/treephys/25.7.903

    Article  PubMed  Google Scholar 

  71. Robitaille A, Saucier J-P (1998) Paysages régionaux du Québec méridional. Gouvernement du Québec, Ministère des ressources naturelles, Québec

  72. Schneider R, Franceschini T, Fortin M, et al (2016) Growth and yield models for predicting tree and stand productivity. In: Ecological forest management handbook. Taylor&Francis Group /CRC Press. Guy R. Larocque, Boca Raton, pp 141–178

  73. Schütz JP (2001) Opportunities and strategies of transforming regular forests to irregular forests. For Ecol Manag 151:87–94

    Article  Google Scholar 

  74. Schütz JP (2002) Silvicultural tools to develop irregular and diverse forest structures. Forestry 75:329–337

    Article  Google Scholar 

  75. Thiffault N, Roy V, Prégent G et al (2003) La sylviculture des plantations résineuses au Québec. Nat Can 127:63–80

    Google Scholar 

  76. Tremblay S, Power H, Auger I (2019) Effets réels de l’éclaircie précommerciale: évaluation des prévisions des modèles de croissance Natura-2014 et Artémis-2014 dans des peuplements de résineux propices à une éclaircie précommerciale. Note de recherche forestière no 153, Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs, Gouvernement du Québec

  77. Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB International, Wallingford

    Google Scholar 

  78. Vieilledent G, Courbaud B, Kunstler G, Dhôte J-F (2010) Mortality of silver fir and Norway Spruce in the Western Alps–a semi-parametric approach combining size-dependent and growth-dependent mortality. Ann For Sci 67:305

    Article  Google Scholar 

  79. Von Gadow K, Hui GY (2002) Characterizing forest spatial structure and diversity. Sustain For Temp Reg Björk Ed SUFOR Univ Lund Lund Swed 20–30

  80. Wang W, Peng C, Kneeshaw DD et al (2012) Drought-induced tree mortality: ecological consequences, causes, and modeling. Environ Rev 20:109–121

    Article  Google Scholar 

  81. Weiskittel AR, Hann DW, Kershaw JA Jr, Vanclay JK (2011) Forest growth and yield modeling. Wiley, West Sussex

    Google Scholar 

  82. Zeide B (2001) Thinning and growth: a full turnaround. J For 99:20–25

    Google Scholar 

  83. Zeileis A (2014) ineq: measuring inequality, concentration, and poverty. R Package Version 02-13

Download references

Acknowledgements

The authors would like to underline the contribution of both anonymous reviewers. The authors would also like to thank Murray Hay for the linguistic review. The process was one of the most interesting they have gone through, with the impression that the revision was similar to having an interesting discussion around a cup of coffee. The development of the growth simulator was made possible by funding from the Québec Ministry of Forests, Wildlife and Parks (Ministère des Forêts, de la Faune et de Parcs du Québec), the Fonds de Recherche Québécois sur la Nature et les Technologies (FRQNT), the Natural Sciences and Engineering Research Council of Canada and the Lebel Group.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert Schneider.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Miren del Rio.

Appendix: Development of the growth module

Appendix: Development of the growth module

The growth model comprises three components as described in Bérubé-Deschênes et al. (2017a, b):

$$\frac{{{\rm iBA}}_{ijk}}{{5\cdot {\rm BA}}_{ijk}}=f\left({{\rm SI}}_{i}\right)g\left({{D}}_{ijk}\right)h\left({{C}}_{ijk}\right)+{\varepsilon }_{ijk}$$
(18)

where iBAijk is the 5-year basal area increment of tree i in plot j of plantation k, BAijk is the basal area of that tree, Dijk is the tree’s DBH, \(f\left({{\rm SI}}_{i}\right)\) is the effect of site index on relative growth, \(g\left({{D}}_{ijk}\right)\) is the change in relative growth with tree size, \(h\left({{C}}_{ijk}\right)\) is the reduction in relative growth with the competition, and \({\varepsilon }_{ijk}\) is the random error of the model (\({\varepsilon }_{ijk}\sim N\left(0, {\sigma }^{2}\right))\). Random effects were tested and were not retained as signs of over-parameterization were observed. Moreover, the models having random effects had poorer fit statistics than the model presented in Eq. 18.

The effect of site fertility was entered linearly, i.e.:

$$f\left({{\rm SI}}_{i}\right)={b}_{0}+{b}_{1} \mathrm{SI}$$
(19)

Different forms for the effect of tree size on relative growth were tested:

$$g\left({{D}}_{ijk}\right)= \frac{1}{1+{d}_{1} {{\rm DBH}}_{ijk}}$$
(20)
$$g\left({{D}}_{ijk}\right)= \mathrm{exp}\left(-{d}_{1} {{\rm DBH}}_{ijk}\right)$$
(21)
$$g\left({{D}}_{ijk}\right)= \mathrm{exp}\left(-0.5 {\left(\frac{\mathrm{log}{{\rm DBH}}_{ijk}}{\left|{d}_{1}\right|}\right)}^{2}\right)$$
(22)
$$g\left({{D}}_{ijk}\right)= \frac{\mathrm{exp}\left({d}_{1} {{\rm DBH}}_{ijk}\right)}{1+\mathrm{exp}\left({d}_{1} {{\rm DBH}}_{ijk}\right)}$$
(23)

Alternative formulations of the effect of competition were also compared:

$$h\left({{C}}_{ijk}\right)= \frac{1}{1+{c}_{1} {{\rm CI}}_{ijk}}$$
(24)
$$h\left({{C}}_{ijk}\right)= 1-{{\rm exp}}\left(\frac{-{c}_{1}}{{{\rm CI}}_{ijk}}\right)$$
(25)
$$h\left({{C}}_{ijk}\right)= \frac{\mathrm{exp}\left({c}_{1} {{\rm CI}}_{ijk}\right)}{1+\mathrm{exp}\left({c}_{1} {{\rm CI}}_{ijk}\right)}$$
(26)

where \({{\rm CI}}_{ijk}\) was either the basal area of the trees larger than the target tree or the spatially explicit competition index proposed by Martin and Ek (1984):

$${{\rm CI}}_{n}=\sum_{n\ne m}\frac{{{\rm DBH}}_{m}}{{{\rm DBH}}_{n}}\mathrm{exp}\left(\frac{{{\rm dist}}_{nm}}{{{\rm DBH}}_{n}+{{\rm DBH}}_{m}}\right)$$
(27)

where CIn is the competition index of tree n, DBHm is the DBH of the competitor tree m, and distnm is the distance between the target tree n and competitor m. Other spatially explicit and nonspatial competition indices listed in Bérubé-Deschênes et al. (2017a, b) were tested, and the Martin–Ek (ME) and BAL were found to be the best spatially explicit and nonspatial competition indices, respectively (results not presented).

All possible combinations of \(f\left({{\rm SI}}_{i}\right)\), \(g\left({{\rm DBH}}_{ijk}\right)\) and \(h\left({{C}}_{ijk}\right)\) were tested, leading to 12 models being calibrated for each competition index using the white spruce trees found in the calibration database. The Akaike’s information criterion (AIC) for each combination is presented in Table

Table 5 Model AIC for each model calibrated for the BAL and ME competition indices

5. The best models are those having the lowest AIC. Model form for the other species or species groups was assumed to follow that of the white spruce forms.

Furthermore, the separation into clade-specific competition indices was also tested (Bérubé-Deschênes et al. 2017a, b). This implies that the competition indices were divided into either softwood or hardwood indices. For the Martin–Ek index, the CI are calculated as:

$${{\rm CI}}_{n, {{\rm softwood}}}=\sum_{n\ne m}\frac{{{\rm DBH}}_{m}}{{{\rm DBH}}_{n}}\mathrm{exp}\left(\frac{{{\rm dist}}_{nm}}{{{\rm DBH}}_{n}+{{\rm DBH}}_{m}}\right)$$
(28)

where m are softwood species, and

$${{\rm CI}}_{n, {{\rm hardwood}}}=\sum_{n\ne m}\frac{{{\rm DBH}}_{m}}{{{\rm DBH}}_{n}}\mathrm{exp}\left(\frac{{{\rm dist}}_{nm}}{{{\rm DBH}}_{n}+{{\rm DBH}}_{m}}\right)$$
(29)

where m are hardwood species.

The clade-specific BAL was calculated separately for softwood and hardwood species. The competition indices presented in Eqs. 2426 were then replaced by:

$${c}_{1} {{\rm CI}}_{ijk}={c}_{2} {{\rm CI}}_{ijk, {{\rm softwood}}}+{c}_{3} {{\rm CI}}_{ijk, {{\rm hardwood}}}$$
(30)

The models for each species group were then calibrated by differentiating (or not) the competition by clade. The AIC for each model and type of competition was then compared (Table

Table 6 AIC values for models with clade-specific and no differentiation between clades and for BAL and Martin–Ek competition indices

6).

Finally, the search radius for identifying the competitors was varied between 3, 4 and 5 m. The minimum diameter of the neighbouring trees was also varied between using all trees and using trees with a DBH > 70–100% (by 5% increments) of the DBH of the target tree. The AIC of the white spruce spatially explicit model was compared (Fig.

Fig. 10
figure10

Model AIC for white spruce with varying search radius and minimum competitor DBH

10). The model having the lowest AIC was that where competitors were chosen within a 5-m radius and had a DBH of at least 85% of the DBH of the target tree.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schneider, R., Franceschini, T., Duchateau, E. et al. Influencing plantation stand structure through close-to-nature silviculture. Eur J Forest Res (2021). https://doi.org/10.1007/s10342-020-01349-6

Download citation

Keywords

  • Ecosystem-based forest management
  • Growth and yield model
  • Silviculture
  • Conversion of even-aged stands