Skip to main content

Advertisement

Log in

An approach to quantitative plant–soil relationships of saltcedar woodlands throughout central and southeastern Iberian Peninsula (Spain)

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Saltcedar woodlands are plant formations dominated by several species of the genus Tamarix (Tamaricaceae), representing the potential vegetation in saline, subsaline and wet environments under dry and semi-arid conditions. The broad ecological range of Tamarix communities leads to a heterogeneous floristic composition, with significant differences among habitats in terms of soil and vegetation. Some classification systems for Tamarix communities are only based on vegetation features and do not take any quantitative soil characteristics into account. Twelve Tamarix populations were selected under different ecological environments throughout central and southeastern Iberian Peninsula (Spain). Soil samples and vegetation inventories were collected over the course of 1 year to establish the plant–soil relationships based on constrained ordination analyses. The results showed that three different edaphic gradients were relevant to define the floristic composition of the Spanish saltcedar woodlands: a sodium–moisture gradient, a sulphate–magnesium gradient and a texture gradient. On the basis of these findings, we suggest a new classification system for Tamarix woodlands for the Mediterranean area based on plant–soil relationships. Three vegetation types have been proposed: hyperhalophilous, mesohalophilous and freshwater plant communities. Hyperhalophilous plant communities were characterised by soils with high E.C., high Na+ concentration, low soil moisture and high percentage of clay, being usually dominated by T. boveana and halophytes. Mesohalophilous plant communities had soils with high E.C., high Mg2+ and SO42− concentrations and high percentage of sand, being dominated by T. gallica with mesohalophilous and nitrophilous species. Finally, freshwater plant communities typically showed low E.C., low Na+ concentration and high soil moisture, being characterised by T. gallica with riparian and nitrophilous plants. Since the studied saltcedar woodland communities are notably dependent on soil salinity and moisture, the control of the human activities and hydrological alteration should be considered as a priority to contribute to the global preservation of the Tamarix woodlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AEMET (2013) Resumen anual climatológico 2013. Agencia Estatal de Meteorología. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid

    Google Scholar 

  • AEMET (2014) Resumen anual climatológico 2014. Agencia Estatal de Meteorología. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid

    Google Scholar 

  • Alcaraz F, Sánchez-Gómez P, de la Torre A, Ríos S, Álvarez Rogel J (1991) Datos sobre la vegetación de Murcia (España). Guía geobotánica de la Excursión de las XI Jornadas de Fitosociología. PPU-DM, Lérida

    Google Scholar 

  • Álvarez-Cobelas M, Cirujano S, Sánchez-Carrillo S (2001) Hydrological and botanical man-made changes in the Spanish wetland of Las Tablas de Daimiel. Biol Conserv 97:89–98. https://doi.org/10.1016/S0006-3207(00)00102-6

    Article  Google Scholar 

  • Álvarez-Rogel J, Alcaraz F, Ortiz R (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of southeast Spain. Wetlands 20(2):357–372. https://doi.org/10.1672/0277-5212(2000)020%5b0357:SSAMGA%5d2.0.CO;2

    Article  Google Scholar 

  • Álvarez-Rogel J, Jiménez-Cárceles FJ, Roca MJ, Ortiz R (2007) Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities. Estuar Coast Shelf Sci 73(3–4):510–526. https://doi.org/10.1016/j.ecss.2007.02.018

    Article  Google Scholar 

  • Baum BR (1967) Introduced and naturalized tamarisks in the United States and Canada. Baileya 15:19–25

    Google Scholar 

  • Baum BR (1978) The genus Tamarix. The Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Berzas JJ, García LF, Rodríguez RC, Martín-Álvarez PJ (2000) Evolution of the water quality of a managed natural wetland: Tablas de Daimiel National Park (Spain). Water Res 34(12):3161–3170. https://doi.org/10.1016/S0043-1354(00)00069-5

    Article  CAS  Google Scholar 

  • Blanca G, Cabezudo B, Cueto M, Salazar C, Morales Torres C (eds) (2011) Flora Vascular de Andalucía Oriental, 2nd edn. Universidades de Almería, Granada, Jaén y Málaga, Granada

    Google Scholar 

  • Braun-Blanquet J (1946) Über den Deckungswert der Arten in den Pfl anzengesellschaften der Ordnung Vaccinio-Piceetalia. Jahresber Naturforsch Ges Graubündens 130:115–119

    Google Scholar 

  • Braun-Blanquet J (1979) Fitosociología. Bases para el estudio de las comunidades vegetales. Blume, Madrid

    Google Scholar 

  • Burt R (2004) Soil Survey Laboratory Methods Manual, version 4.0. Soil Survey Investigations Report Nº42. United States Department of Agriculture (USDA)—Natural Resources Conservation Service (NRCS), Lincoln

  • Cano E, Valle F, Salazar C, García-Fuentes A, Torres JA (2004) Tarayales del sur de la Península Ibérica. Colloqu Phytosociol 28:591–612

    Google Scholar 

  • Castroviejo S (coord gen) (1986–2015) Flora iberica 1–16(I), 17–18, 20–21. Real Jardín Botánico, CSIC, Madrid

  • Chapman VJ (1940) Studies in salt-marsh ecology. Sections VI and VII. Comparison with marshes on the east coast of North America. J Ecol 28(1):118–152. https://doi.org/10.2307/2256166

    Article  Google Scholar 

  • Chapman VJ (1974) Salt marshes and salt deserts of the world, 2nd edn. J. Cramer, Lehre

    Google Scholar 

  • Cirujano S (1993) Tamarix L. In: Castroviejo S, Aedo C, Cirujano S, Laínz M, Montserrat P, Morales R, Muñoz Garmendia F, Navarro C, Paiva J, Soriano C (eds) Flora iberica 3. Real Jardín Botánico, CSIC, Madrid, pp 437–445

    Google Scholar 

  • Conan C, de Marsily G, Bouraoui F, Bidoglio G (2003) A long-term hydrological modelling of the Upper Guadiana river basin (Spain). Phys Chem Earth 28(4–5):193–200. https://doi.org/10.1016/S1474-7065(03)00025-1

    Article  Google Scholar 

  • Custodio E, Llamas MR (2001) Hidrología subterránea, 2nd edn. Omega, Barcelona

    Google Scholar 

  • Davis MM, Sprecher SW, Wakeley JS, Best GR (1996) Environmental gradients and identification of wetlands in North-Central Florida. Wetlands 16:512–523. https://doi.org/10.1007/BF03161341

    Article  Google Scholar 

  • Deckers JA, Nachtergaele FO, Spaargaren OC (eds) (1998) World reference base for soil resources. Introduction. ISSS/ISRIC/FAO, Acco, Leuven/Amersfoort

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Massachusetts

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x

    Article  CAS  PubMed  Google Scholar 

  • Garilleti R, Calleja JA, Lara F (2012) Vegetación ribereña de los ríos y ramblas de la España meridional (península y archipiélagos). Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España, Madrid

    Google Scholar 

  • Gasith A, Resh VH (1999) Streams in Mediterranean Climate Regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81. https://doi.org/10.1146/annurev.ecolsys.30.1.51

    Article  Google Scholar 

  • Gaskin JF, Schaal B (2003) Molecular phylogenetic investigation of U.S. invasive Tamarix. Syst Bot 28(1):86–95. https://doi.org/10.1043/0363-6445-28.1.86

    Article  Google Scholar 

  • González-Alcaraz MN, Jiménez-Cárceles FJ, Álvarez Y, Álvarez-Rogel J (2014) Gradients of soil salinity and moisture, and plant distribution, in a Mediterranean semiarid saline watershed: a model of soil–plant relationships for contributing to the management. CATENA 115:150–158. https://doi.org/10.1016/j.catena.2013.11.011

    Article  CAS  Google Scholar 

  • Harrell Jr FE, Dupont MC (2006) The Hmisc package. R Package, version, 2-0

  • Harris DC (2003) Quantitative chemical analysis, 6th edn. W.H. Freeman, New York

    Google Scholar 

  • Hervé M (2011) GrapheR: a multiplatform GUI for drawing customizable graphs in R. R J 3(2):45–53

    Article  Google Scholar 

  • Hothorn T, Bretz F, Hothorn MT (2009) The multcomp package. Technical report 1.0-6, The R Project for Statistical Computing. www.r-project.org. Accessed 20 Jan 2019

  • IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

  • Izco J, Fernández F, Molina A (1984) El orden Tamaricetalia Br.-Bl. and Bolós 1957 y su ampliación con los tarayales hiperhalófilos. Doc Phytosociol 8:377–392

    Google Scholar 

  • Juárez M, Sánchez A, Jordá J, Sánchez J (2004) Diagnóstico del potencial nutritivo del suelo. Universidad de Alicante, Alicante

    Google Scholar 

  • Kaown D, Koh D, Mayer B, Lee K (2009) Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea). Agr Ecosyst Environ 132(3–4):223–231. https://doi.org/10.1016/j.agee.2009.04.004

    Article  CAS  Google Scholar 

  • Lara F, Garilleti R, Calleja JA (2004) La vegetación de ribera de la mitad norte española. Ministerio del Medio Ambiente y Ministerio de Fomento, CEDEX, Madrid

    Google Scholar 

  • Lefcheck JS (2016) piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7(5):573–579. https://doi.org/10.1111/2041-210X.12512

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2014) Multivariate analysis of ecological data using CANOCO 5, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Mateo G, Crespo MB (2009) Manual para la determinación de la flora valenciana, 4th edn. Librería Compás, Alicante

    Google Scholar 

  • Meinzer OE (1927) Plants as indicators of groundwater. U.S. Geological Survey Water Supply Paper 577

  • Moreno J, Terrones A, Juan A, Alonso MA (2018) Halophytic plant community patterns in Mediterranean saltmarshes: shedding light on the connection between abiotic factors and the distribution of halophytes. Plant Soil 430:185–204. https://doi.org/10.1007/s11104-018-3671-0

    Article  CAS  Google Scholar 

  • Mota JF, Sánchez-Gómez P, Guirado JS (eds) (2011) Diversidad vegetal de las yeseras ibéricas. El reto de los archipiélagos edáficos para la biología de la conservación. ADIF-Mediterráneo Asesores Consultores, Almería

    Google Scholar 

  • Munsell® Corporation (1994) Soil colour charts, revised edition. Macbeth Division of Kollmorgen Instruments Corporation, New Windsor

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  • Palacio S, Escudero A, Montserrat-Martí G, Maestro M, Milla R, Albert MJ (2007) Plants living on gypsum: beyond the specialist model. Ann Bot 99:333–343. https://doi.org/10.1093/aob/mcl263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piernik A (2003) Inland halophilous vegetation as indicator of soil salinity. Basic Appl Ecol 4:525–536. https://doi.org/10.1078/1439-1791-00154

    Article  Google Scholar 

  • Piirainen M, Liebisch O, Kadereit G (2017) Phylogeny, biogeography, systematics and taxonomy of Salicornioideae (Amaranthaceae/Chenopodiaceae)—a cosmopolitan, highly specialized hygrohalophyte lineage dating back to the Oligocene. Taxon 66(1):109–132. https://doi.org/10.12705/661.6

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core team (2009) nlme: linear and nonlinear mixed effects models. R package version 3.1-96. R Foundation for Statistical Computing, Vienna

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/. Accessed 20 Jan 2019

  • Richards LA (1974) Diagnóstico y rehabilitación de suelos salinos y sódicos. Limusa, Mexico

    Google Scholar 

  • Rivas-Martínez S (2007) Mapa de series, geoseries y geopermaseries de vegetación de España. Memoria del mapa de vegetación potencial de España, Parte I. Itinera Geobot 17:5–436

    Google Scholar 

  • Salinas MJ, Casas J (2007) Riparian vegetation of two semiarid Mediterranean rivers: basin-scale responses of woody and herbaceous plants to environmental gradients. Wetlands 27(4):831–845. https://doi.org/10.1672/0277-5212(2007)27%5b831:RVOTSM%5d2.0.CO;2

    Article  Google Scholar 

  • Salinas MJ, Blanca G, Romero AT (2000) Evaluating riparian vegetation in semi-arid Mediterranean watercourses in the South-Eastern Iberian Peninsula. Environ Conserv 27(1):24–35. https://doi.org/10.1017/S0376892900000047

    Article  Google Scholar 

  • Sebastián-González E, Molina JA, Paracuellos M (2012) Distribution patterns of a marsh vegetation metacommunity in relation to habitat configuration. Aquat Biol 16:277–285. https://doi.org/10.3354/ab00459

    Article  Google Scholar 

  • Stromberg J (1998) Dynamics of Fremont cottonwood (Populus fremontii) and saltcedar (Tamarix chinensis) populations along the San Pedro River, Arizona. J Arid Environ 40:133–155. https://doi.org/10.1006/jare.1998.0438

    Article  Google Scholar 

  • Stromberg JC, Lite SJ, Marler R, Parazdick C, Shafroth PB, Shorrock D, White JM, White MS (2007) Altered stream-flow regimes and invasive plant species: the Tamarix case. Global Ecol Biogeogr 16:381–393. https://doi.org/10.1111/j.1466-8238.2007.00297.x

    Article  Google Scholar 

  • Tabachnick BG, Fidell LS (2007) Using multivariate statistics, 5th edn. Pearson, Boston

    Google Scholar 

  • USDA (2017) Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/. Accessed 20 Jan 2019

  • Villar JL (2017) Tamarix. In: Euro + Med Plantbase—the information resource for Euro-Mediterranean plant diversity. Published on the Internet, http://ww2.bgbm.org/EuroPlusMed/. Accessed 6th July 2019

  • Villar JL, Alonso MA, Juan A, Gaskin JF, Crespo MB (2019) Out of the Middle East: new phylogenetic insights in the genus Tamarix (Tamaricaceae). J Syst Evol. https://doi.org/10.1111/jse.12478

    Article  Google Scholar 

  • Vives R, Fernández T, Águila M, Esteve MA, Núñez MA, Giménez L (2011) Los saladares del Guadalentín. Ayuntamiento de Alhama de Murcia, Murcia

    Google Scholar 

  • Welde B, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. Springer, Berlin

    Google Scholar 

  • Zedler JB, Callaway JC, Desmond JS, Vivian-Smith G, Williams GD, Sullivan G, Brewster AE, Bradshaw BK (1999) Californian salt marsh vegetation: an improved model of spatial pattern. Ecosystems 2:19–35. https://doi.org/10.1007/s100219900055

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Jan Lepš and Prof. Petr Šmilauer for their excellent lessons in the design and analysis of ecological experiments; José Vicente Guardiola for his revision of the statistics methodology; Antonio Sánchez for lending his Bouyoucos densitometers; Nick Marchant for the English review; AEMET (Mº de Agricultura, Alimentación y Medio Ambiente, Spain) for providing the climatic database; and the University of South Bohemia for providing CANOCO v.5 (Microcomputer Power, Ithaca, NY, USA) to perform the statistical analyses. We also want to express our grateful gratitude to the Director and guards of the National Park ‘Tablas de Daimiel’ for providing us with the facilities and permissions to collect material in this protected area. We greatly appreciate the constructive comments by the anonymous reviewers, who acutely helped to improve the manuscript. This research was supported by the Mº de Agricultura, Alimentación y Medio Ambiente of Spanish Government [Project OAPN 354/2011] and the Mº de Educación of Spanish Government [FPU Grant AP-2012-1954]. This study is part of the Ph.D. Thesis of Joaquín Moreno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Moreno.

Additional information

Communicated by Agustín Merino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2145 kb)

Supplementary material 2 (XLSX 65 kb)

10342_2019_1227_MOESM3_ESM.pdf

Figure S1. Ordination diagram of the canonical correspondence analysis (CCA) of saltcedar woodland vegetation from the twelve studied Tamarix communities, showing (a) correlations between plant species and edaphic variables in the axes 1 and 3 and (b) correlations between samples and edaphic variables in the axes 1 and 3. The diagram represents only the forty plant species that were best predicted by the explanatory variables. Arrows indicate the edaphic variables and their directions, and lengths show their relationships to the ordination axes. Edaphic variable abbreviations: E.C., electrical conductivity; moisture, soil moisture; PAWC, plant available water capacity; SAR, sodium adsorption ratio. Species abbreviations: AgrSto, Agrostis stolonifera; BolMar, Bolboschoenus maritimus; BraNap, Brassica napus; CalSep, Calystegia sepium; CapBur, Capsella bursa-pastoris; CheMar, Chenopodium x maroccanum; DipVir, Diplotaxis virgata; ElyHis, Elymus hispidus; HalPor, Halimione portulacoides; JunMar, Juncus maritimus; LacSer, Lactuca serriola; LamAmp, Lamium amplexicaule; LimCri, Limbarda crithmoides; LimAng, Limonium angustebracteatum; LimCae, Limonium caesium; LimDel, Limonium delicatulum; LimDic, Limonium dichotomum; LimSup, Limonium supinum; LygSpa, Lygeum spartum; MedLit, Medicago littoralis; PhaAru, Phalaris arundinacea; PhrAus, Phragmites australis subsp. australis; PlaCor, Plantago coronopus; PolMon; Polypogon monspeliensis; PopAlb, Populus alba; PopNig, Populus nigra; RumCon, Rumex conglomeratus; RumPal, Rumex palustris; SalFru, Salicornia fruticosa; SamVal, Samolus valerandi; SedCae, Sedum caespitosum; SilMar, Silybum marianum; SonAsp, Sonchus asper; SuaVer, Suaeda vera; TamBov, Tamarix boveana; TamGal, Tamarix gallica; TypDom, Typha domingensis; UlmGla, Ulmus glabra; VerPer, Veronica persica; XanIta, Xanthium italicum. Site abbreviations: P1, Algeciras Island; P2, Casa Blanca Stream; P3, Gato Ravine; P4, Cigüela River; P5, the downstream zone; P6, Guadiana River; P7, Guadalentín Saltmarsh; P8, Agramón Saltmarsh; P9, Elche Reservoir; P10, El Carmolí Saltmarsh; P11, Requena Saltmarsh; P12, Salinas Lagoon. Time abbreviations: i, autumn (October 2013); ii, winter (January 2014); iii, spring (April 2014); iv, summer (July 2014). (PDF 56 kb)

10342_2019_1227_MOESM4_ESM.pdf

Figure S2. Variations in Ca2+ and K+ concentrations, Ca2+/Mg2+, K+/Na+ and pH in the different saltcedar woodland communities depending on the period. Shared letters indicate no difference between Tamarix communities for each period (Significance test P ≤ 0.05). Asterisks show significant differences between periods within the same vegetation type (significance test P ≤ 0.05). (PDF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, J., Terrones, A., Alonso, M.Á. et al. An approach to quantitative plant–soil relationships of saltcedar woodlands throughout central and southeastern Iberian Peninsula (Spain). Eur J Forest Res 138, 1095–1108 (2019). https://doi.org/10.1007/s10342-019-01227-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-019-01227-w

Keywords

Navigation