Contrasting patterns of tree species mixture effects on wood δ13C along an environmental gradient

Abstract

Establishing mixed-species stands is frequently proposed as a strategy to adapt forests to the increasing risk of water scarcity, yet contrasted results have been reported regarding mixing effects on tree drought exposure. To investigate the drivers behind the spatial and temporal variation in water-related mixing effects, we analysed the δ13C variation in 22-year tree ring chronologies for beech and pine trees sampled from 17 pure and mixed pine–beech stands across a large gradient of environmental conditions throughout Europe. In the pure stands, average δ13C values were lower for beech (−27.9‰ to −22.2‰) than for pine (−26.0‰ to −21.1‰), irrespective of site conditions. Decreasing SPEI values (calculated over June to September) were associated with an increase in δ13C for both species, but their effect was influenced by stand basal area for pine and site water availability for beech. Mixing did not change the temporal constancy of δ13C nor the tree reaction to a drought event, for any of the species. While the mixing effect (Δ δ13C = δ13C pure stands − δ13C mixed stands) was on average positive for beech and non-significant for pine across the whole gradient, this effect strongly differed between sites. For both species, mixing was not significant at extremely dry sites and positive at dry sites; on moderately wet sites, mixing was positive for beech and negative for pine; at sites with permanent water supply, no general patterns emerge for any of the species. The pattern of mixing effect along the gradient of water availability was not linear but showed threshold points, highlighting the need to investigate such relation for other combinations of tree species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ammer C (2019) Diversity and forest productivity in a changing climate. New Phytol 221(1):50–66

    PubMed  Article  PubMed Central  Google Scholar 

  2. Anderegg WR, Konings AG, Trugman AT et al (2018) Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561(7724):538

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. Augusto L, Schrijver AD, Vesterdal L, Smolander A, Prescott C, Ranger J (2015) Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol Rev 90:444–466

    PubMed  Article  PubMed Central  Google Scholar 

  4. Balneaves JM, De La Mare PJ (1989) Root patterns of Pinus radiata on five ripping treatments in a Canterbury forest. NZ J Forest Sci 19(1):29–40

    Google Scholar 

  5. Barbeito I, Dassot M, Bayer D et al (2017) Terrestrial laser scanning reveals differences in crown structure of Fagus sylvatica in mixed vs. pure European forests. For Ecol Manage 405:381–390

    Article  Google Scholar 

  6. Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023

    Article  Google Scholar 

  7. Bonal D, Pau M, Toigo M, Granier A, Perot T (2017) Mixing oak and pine trees does not improve the functional response to severe drought in central French forests. Ann For Sci 74(4):72

    Article  Google Scholar 

  8. Bosela M, Lukac M, Castagneri D, Sedmák R, Biber P, Carrer M, Konöpa B, Nagel TA, Popa I, Constantin Roibu C, Svoboda M, Trotsiuk V, Büntgen U (2018) Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Sci Total Environ 615:1460–1469

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Field TS, Gleason SM, Hacke UG (2012) Global convergence in the vulnerability of forests to drought. Nature 491(7426):752–755

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. Choisnel E, Villele OD, Lacroze F, C. Commission of the European, C. Joint Research (1992) Une approche uniformisee du calcul de l’evapotranspiration potentielle pour l’ensemble des pays de la communaute europeenne

  11. Claus A, George E (2005) Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Can J For Res 35(7):1617–1625

    Article  Google Scholar 

  12. Cochard H (1992) Vulnerability of several conifers to air embolism. Tree Physiol 11(1):73–83

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. Core Team R (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  14. Daux V, Michelot-Antalik A, Lavergne A, Pierre M, Stievenard M, Bréda N, Damesin C (2018) Comparisons of the performance of δ13C and δ18O of Fagus sylvaticaPinus sylvestris, and Quercus petraea in the record of past climate variations. J Geophys Res Biogeosci 123:1145–1160

    Article  Google Scholar 

  15. de Martonne E (1926) L’indice d’aridité. Bulletin de l’Association de géographes français, 3–5

  16. del Río M, Schütze G, Pretzsch H (2014) Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol 16(1):166–176

    PubMed  Article  PubMed Central  Google Scholar 

  17. del Río M, Pretzsch H, Ruíz-Peinado R et al (2017) Species interactions increase the temporal stability of community productivity in Pinus sylvestrisFagus sylvatica mixtures across Europe. J Ecol 105(4):1032–1043

    Article  Google Scholar 

  18. Dirnberger G, Sterba H, Condés S et al (2017) Species proportions by area in mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.). . Eur J Forest Res 136(1):171–183

    Article  Google Scholar 

  19. Droogers P, Allen R (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrigat Drain Syst 16(1):33–45

    Article  Google Scholar 

  20. Ehleringer JR, Field CB, Lin ZF, Kuo CY (1986) Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70(4):520–526

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct Plant Biol 11(6):539–552

    CAS  Article  Google Scholar 

  22. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol 9(2):121–137

    CAS  Article  Google Scholar 

  23. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol 40:503–537

    CAS  Article  Google Scholar 

  24. Finér L, Helmisaari HS, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141(3):394–405

    Article  Google Scholar 

  25. Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag 312:282–292

    Article  Google Scholar 

  26. Forrester DI (2015) Transpiration and water-use efficiency in mixed species forests versus monocultures: effects of tree size, stand density and season. Tree Physiol 35:289–304

    PubMed  Article  PubMed Central  Google Scholar 

  27. Forrester DI, Bauhus J (2016) A review of processes behind diversity—productivity relationships in forests. Curr For Rep 2(1):45–61

    Google Scholar 

  28. Forrester DI, Bonal D, Dawud S, Gessler A, Granier A, Pollastrini M, Grossiord C (2016) Drought responses by individual tree species are not often correlated with tree species diversity in European forests. J Appl Ecol 53(6):1725–1734

    CAS  Article  Google Scholar 

  29. Forrester DI, Ammer C, Annighöfer PJ et al (2017a) Predicting the spatial and temporal dynamics of species interactions in Fagus sylvatica and Pinus sylvestris forests across Europe. For Ecol Manag 405:112–133

    Article  Google Scholar 

  30. Forrester DI, Benneter A, Bouriaud O, Bauhus J (2017b) Diversity and competition influence tree allometric relationships–developing functions for mixed-species forests. J Ecol 105(3):761–774

    Article  Google Scholar 

  31. Gebauer T, Horna V, Leuschner C (2012) Canopy transpiration of pure and mixed forest stands with variable abundance of European beech. J Hydrol 442–443:2–14

    Article  Google Scholar 

  32. González de Andrés E, Camarero JJ, Blanco JA, Imbert JB, Lo YH, Sangüesa-Barreda G, Castillo FJ (2018) Tree-to-tree competition in mixed European beech–Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. J Ecol 106(1):59–75

    Article  CAS  Google Scholar 

  33. González de Andrés E, Blanco JA, Imbert JB, Guan BT, Lo YH, Castillo FJ (2019) ENSO and NAO affect long-term leaf litter dynamics and stoichiometry of Scots pine and European beech mixedwoods. Global Change Biol 25:3070–3090. https://doi.org/10.1111/gcb.14672

    Article  Google Scholar 

  34. Greacen El, Sands R (1980) Compaction of forest soils. A review. Aust J Soil Res 18(2):163

    Article  Google Scholar 

  35. Grossiord C, Granier A, Gessler A, Jucker T, Bonal D (2014) Does drought influence the relationship between biodiversity and ecosystem functioning in boreal forests? Ecosystems 17(3):394–404

    CAS  Article  Google Scholar 

  36. Grossiord C, Forner A, Gessler A, Granier A, Pollastrini M, Valladares F, Bonal D (2015) Influence of species interactions on transpiration of Mediterranean tree species during a summer drought. Eur J For Res 134(2):365–376

    CAS  Article  Google Scholar 

  37. Härdtle W, Niemeyer T, Assmann T, Baiboks S, Fichtner A, Friedrich U, Lang AC, Neuwirth B, Pfister L, Ries C, Schuldt A, Simon N, von Oheimb G (2013) Long-term trends in tree-ring width and isotope signatures (δ13C, δ15 N) of Fagus sylvatica L. on soils with contrasting water supply. Ecosystems 16:1413

    Article  CAS  Google Scholar 

  38. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res (Atmospheres) 113:D20119. https://doi.org/10.1029/2008JD10201

    Article  Google Scholar 

  39. Hector A, Hautier Y, Saner P et al (2010) General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91(8):2213–2220

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Hemming DI, Switsur VR, Waterhouse JS, Heaton THE, Carter AHC (1998) Climate variation and the stable carbon isotope composition of tree ring cellulose: an intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris. Tellus B Chem Phys Meteorol 50(1):25–33

    Article  Google Scholar 

  41. Heym M, Ruíz-Peinado R, del Río M et al (2017) EuMIXFOR empirical forest mensuration and ring width data from pure and mixed stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) through Europe. Ann For Sci 74(3):63

    Article  Google Scholar 

  42. IAEA (1995) Reference and intercomparison materials for stable isotopes of light elements. International Atomic Energy Agency, Vienna

    Google Scholar 

  43. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex, V, Midgley, PM (Eds.) Climate change 2013: The physical science basis. Contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  44. Isbell F, Craven D, Connolly J et al (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526(7574):574

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Jiang L, Pu Z (2009) Different effects of species diversity on temporal stability in single-trophic and multitrophic communities. Am Nat 174:651–659

    PubMed  Article  PubMed Central  Google Scholar 

  46. Jucker T, Bouriaud O, Avacariei D, Coomes DA (2014) Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol Lett 17:1560–1569

    PubMed  Article  PubMed Central  Google Scholar 

  47. Khosravifar S, Yarnia M, Benam MBK, Moghbeli AHH (2008) Effect of potassium on drought tolerance in potato cv agria. J Food Agric Environ 6:236–241

    CAS  Google Scholar 

  48. Kozlowski TT (1986) Soil aeration and growth of forest trees (review article). Scand J For Res 1(1–4):113–123

    Article  Google Scholar 

  49. Lebourgeois F, Gomez N, Pinto P, Mérian P (2013) Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manag 303(1):61–71

    Article  Google Scholar 

  50. Lévesque M, Saurer M, Siegwolf R, Eilmann B, Brang P, Bugmann H, Rigling A (2013) Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob Change Biol 19(10):3184–3199

    Article  Google Scholar 

  51. Lloret F, Keeling EG, Sala A (2011) Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120(12):1909–1920

    Article  Google Scholar 

  52. Loreau M, de Mazancourt C (2008) Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am Nat 172(2):E48–E66

    PubMed  Article  PubMed Central  Google Scholar 

  53. Maestre FT, Cortina J (2004) Do positive interactions increase with abiotic stress? A test from a semi-arid steppe. Proc R Soc Lond B Biol Sci 271(Suppl 5):S331–S333

    Google Scholar 

  54. Martínez-Vilalta J, Sala A, Piñol J (2004) The hydraulic architecture of Pinaceae—a review. Plant Ecol 171(1):3–13

    Article  Google Scholar 

  55. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quatern Sci Rev 23(7):771–801

    Article  Google Scholar 

  56. McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young GHF, Jalkanen R, Kirchhefer A, Waterhouse JS (2009) Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim Cosmochim Acta 73:1539–1547

    CAS  Article  Google Scholar 

  57. McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155(3):1051–1059

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Medlyn BE, Badeck F-, De Pury DG, Barton CV, Broadmeadow M, Ceulemans R, De Angelis P, Forstreuter M, Jach ME, Kellomäki S, Laitat E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B, Roberntz P, Wang K, Jstbid PG (1999) Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ 22:1475–1495

    CAS  Article  Google Scholar 

  59. Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14(9):2081–2095

    Article  Google Scholar 

  60. Michelot A, Bréda N, Damesin C, Dufrêne E (2012) Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For Ecol Manag 265:161–171

    Article  Google Scholar 

  61. Newton RJ, Meier CE, Van Buijtenen JP, McKinley CR (1986) Moisture-stress management: silviculture and genetics. In: Hennessey TC, Dougherty PD, Kossuth SV, Johnson JD (eds) Stress physiology and forest productivity. Martinus Nijhoff Publishers, Forestry Sciences, The Hague, pp 35–60

    Chapter  Google Scholar 

  62. O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690

    Article  Google Scholar 

  63. Pflug EE, Buchmann N, Siegwolf RT, Schaub M, Rigling A, Arend M (2018) Resilient leaf physiological response of European beech (Fagus sylvatica L.) to summer drought and drought release. Front Plant Sci 9:187

    PubMed  PubMed Central  Article  Google Scholar 

  64. Pinheiro J, Bates D, Debroy S, Sarkar D and R Core Team (2017) nlme: Linear and nonlinear mixed effects models. R package version 3.1-131, https://CRAN.R-project.org/package=nlme

  65. Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol (Stuttg) 15(3):483–495

    CAS  Article  Google Scholar 

  66. Pretzsch H, del Río M, Ammer C, Avdagic A et al (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134(5):927–947

    Article  Google Scholar 

  67. Rozas V, Camarero JJ, Sangüesa-Barreda G, Souto M, García-González I (2015) Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in northern Spain. Agric For Meteorol 201:153–164

    Article  Google Scholar 

  68. Sardans J, Peñuelas J (2007) Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct Ecol 21(2):191–201

    Article  Google Scholar 

  69. Sardans J, Grau O, Chen HY, Janssens IA, Ciais P, Piao S, Peñuelas J (2017) Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob Change Biol 23(9):3849–3856

    Article  Google Scholar 

  70. Saurer M, Siegenthaler U, Schweingruber F (1995) The climate-carbon isotope relationship in tree rings and the significance of site conditions. Tellus B Chem Phys Meteorol 47:320–330

    Article  Google Scholar 

  71. Saurer M, Borella S, Schweingruber F, Siegwolf R (1997) Stable carbon isotopes in tree rings of beech: climatic versus site-related influences. Trees 11(5):291–297

    Article  Google Scholar 

  72. Saurer M, Cherubini P, Reynolds-Henne CE, Treydte KS, Anderson WT, Siegwolf RTW (2008) An investigation of the common signal in tree ring stable isotope chronologies at temperate sites. J Geophys Res 113:G04035

    Article  CAS  Google Scholar 

  73. Schäfer C, Grams TE, Rötzer T, Feldermann A, Pretzsch H (2017) Drought stress reaction of growth and Δ13C in tree rings of European beech and Norway spruce in monospecific versus mixed stands along a precipitation gradient. Forests 8(6):177

    Article  Google Scholar 

  74. Schlesinger WH, Dietze MC, Jackson RB, Phillips RP, Rhoades CC, Rustad LE, Vose JM (2016) Forest biogeochemistry in response to drought. Glob Change Biol 22(7):2318–2328

    Article  Google Scholar 

  75. Schume H, Jost G, Hager H (2004) Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J Hydrol 289:258–274

    Article  Google Scholar 

  76. Szczepanek M, Padzur A, Pawelczyk S et al (2006) Hydrogen, carbon and oxygen isotopes in pine and oak tree rings from southern Poland as climatic indicators in years 1900–2003. Geochronom J Methods Appl Absolute Chronol 25:67–76

    Google Scholar 

  77. Tielbörger K, Kadmon R (2000) Temporal environmental variation tips the balance between facilitation and interference in desert plants. Ecology 81(6):1544–1553

    Article  Google Scholar 

  78. Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles 101. Ecology 80(5):1455–1474

    Google Scholar 

  79. van den Besselaar EJM, Haylock MR, van der Schrier G, Klein Tank AMG (2011) A European daily high-resolution observational gridded data set of sea level pressure. J Geophys Res 116:D11110. https://doi.org/10.1029/2010JD015468

    Article  Google Scholar 

  80. Vanhellemont M, Sousa-Silva R, Maes SL, Van den Bulcke J, Hertzog L, De Groote SR, Van Acker J, Bonte D, Martel A, Lens L, Verheyen K (2019) Distinct growth responses to drought for oak and beech in temperate mixed forests. Sci Total Environ 650:3017–3026

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718

    Article  Google Scholar 

  82. Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14(4):7370–7390

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Weigt RB, Bräunlich S, Zimmermann L, Saurer M, Grams TEE, Dietrich HP, Siegwolf RTW, Nikolova PS (2015) Comparison of δ18O and δ13C values between tree-ring whole wood and cellulose in five species growing under two different site conditions. Rapid Commun Mass Spectrom 29(23):2233–2244

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. Yang N, Zavišić A, Pena R, Polle A (2016) Phenology, photosynthesis, and phosphorus in European beech (Fagus sylvatica L.) in two forest soils with contrasting P contents. J Plant Nutr Soil Sci 179:151–158

    CAS  Article  Google Scholar 

  85. Yuan ZY, Chen HY (2010) Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit Rev Plant Sci 29(4):204–221

    CAS  Article  Google Scholar 

  86. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) In: Gail M, Krickeberg K, Samet JM, Tsiatis A, Wong W (eds)Mixed effects models and extensions in ecology with R. Spring, New York

Download references

Acknowledgements

The networking in this study has been supported by COST Action FP1206 EUMIXFOR. All contributors thank their national funding institutions to establish, measure and analyse data from the triplets. The main author obtained a PhD grant from the “Fonds National de la Recherche Scientifique” (FNRS-FRIA) and additional funding support from the Walloon forest service (Service Public de Wallonie—Département de la Nature et des Forêts) through the 5-year research programme “Accord-cadre de recherches et de vulgarisation forestières”. All authors thank the numerous persons who contributed to the fieldwork in the different sites across Europe. We also thank Maud Antoine who helped carry out the chemical analyses. Finally, we thank the two anonymous reviewers and the main editor who contributed to improving a previous version of this manuscript. We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu)”.

Author information

Affiliations

Authors

Contributions

GdS, DB and QP conceived the ideas and designed methodology; all authors contributed to data collection; GdS, DB and QP analysed the data and led the writing of the manuscript; all authors contributed to the drafts and gave the final approval for publication.

Corresponding author

Correspondence to G. de Streel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Rüdiger Grote.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 942 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Streel, G., Collet, C., Barbeito, I. et al. Contrasting patterns of tree species mixture effects on wood δ13C along an environmental gradient. Eur J Forest Res 139, 229–245 (2020). https://doi.org/10.1007/s10342-019-01224-z

Download citation

Keywords

  • Stable carbon isotope composition
  • Species mixture
  • Fagus sylvatica L.
  • Pinus sylvestris L.
  • Drought