Fire frequency and intensity associated with functional traits of dominant forest type in the Balkans during the Holocene

  • Angelica FeurdeanEmail author
  • Spassimir Tonkov
  • Mirjam Pfeiffer
  • Andrei Panait
  • Dan Warren
  • Boris Vannière
  • Elena Marinova
Original Paper


Disturbances by fire are among the most important processes that shape forest dynamics and diversity. However, the long-term variability of fire disturbance regimes in many European forests and specifically in the mountains of the Balkan Peninsula is not well understood. Here, we present the first Holocene record of fire regimes based on macrocharcoal morphologies in combination with pollen-based reconstruction of forest dynamics and fire-related strategies of prevailing mountain forests in the Rila Mountains, Bulgaria. While biomass burning followed the main trends in climate, the frequency and intensity of fire were strongly linked to fire-related coping strategies of dominant tree taxa (resisters, avoiders or invaders). Frequent fires of low intensity between 12,000 and 9000 cal year BP were concurrent with the dominance of invaders (Betula, herbs, ferns). Intermittent occurrence of low- and high-intensity surface and crown fires with longer return intervals between 9000 and 4000 cal year BP was associated with codominance of resister (Pinus sylvestris, Pinus peuce, Pinus mugo) and avoider (Abies alba and Picea abies) forest types, whereas a lengthening of the fire return interval over the past 4000 years was linked to increased abundance of P. abies. As a rising number of fire episodes may drive land cover towards more fire-adapted plant communities and towards less intense fire events, we expect increased dominance of invaders (resprouters that rapidly reach maturity stage) as well as resisters (properties protecting from fire damage) under future warmer and drier climate. This study also shows the potential of combining charcoal morphologies with pollen records to track variability in fire intensity and plant functional attributes over long timescales that are also relevant to forest management stakeholders.


Fire Post-fire regeneration Invaders Resisters Avoiders Vegetation Pollen Charcoal 



This work was supported by the German Research Foundation [FE-1096/4-1]. It also received support from CNCS—UEFISCDI [PN-III-P4-ID-PCE-2016-0711]. We thank G. Wolff for his assistance during the filedwork.

Supplementary material

10342_2019_1223_MOESM1_ESM.docx (194 kb)
Online Resource 1. The Chronology of the Vapsko-2 sediment sequence (DOCX 194 kb)
10342_2019_1223_MOESM2_ESM.docx (157 kb)
Online Resource 2. Change-point analysis developed to determine statistically significant changes in CHAR over time (DOCX 156 kb)
10342_2019_1223_MOESM3_ESM.tif (923 kb)
Online Resource 3a. Pollen diagram of selected tree and shrubs (TIFF 923 kb)
10342_2019_1223_MOESM4_ESM.tif (1.2 mb)
Online Resource 3b. Pollen diagram of selected herbs and ferns (TIFF 1235 kb)
10342_2019_1223_MOESM5_ESM.docx (55 kb)
Online Resource 4. Fossil stomata record in Vapsko-2 (in absolute number) (DOCX 54 kb)


  1. Adámek M, Hadincová V, Wild J (2016) Long-term effect of wildfires on temperate Pinus sylvestris forests: vegetation dynamics and ecosystem resilience. For Ecol Manag 380:285–295CrossRefGoogle Scholar
  2. Adámek M, Jankovská Z, Hadincová V, Kula E, Wild J (2018) Drivers of forest fire occurrence in the cultural landscape of Central Europe. Landscape Ecol 33:2031–2045CrossRefGoogle Scholar
  3. Adolf C, Wunderle S, Colombaroli D, Weber H, Gobet E, Heiri O, van Leeuwen JF, Bigler C, Connor SE, Gałka M, La Mantia T (2018) The sedimentary and remote-sensing reflection of biomass burning in Europe. Glob Ecol Biogeogr 27:199–212CrossRefGoogle Scholar
  4. Archibald S, Lehmann CER, Belcher CM, Bond WJ, Bradstock RA, Daniau AL, Zanne AE (2018) Biological and geophysical feedbacks with fire in the Earth system. Environ Res Lett 13:033003CrossRefGoogle Scholar
  5. Berthel N, Schwöer C, Tinner W (2012) Impact of Holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland. Rev Palaeobot Palynol 174:91–100CrossRefGoogle Scholar
  6. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  7. Blarquez O, Carcaillet C (2010) Fire, fuel composition and resilience threshold in subalpine ecosystem. PLoS ONE 30(5):e12480CrossRefGoogle Scholar
  8. Blarquez O, Carcaillet C, Bremond L, Mourier B, Radakovitch O (2010) Trees in the subalpine belt since 11 700 cal. BP: origin, expansion and alteration of the modern forest. Holocene 20:139–146CrossRefGoogle Scholar
  9. Bobek P, Šamonil P, Jamrichová E (2018a) Biotic controls on Holocene fire frequency in a temperate mountain forest, Czech Republic. J Quat Sci 33:892–904CrossRefGoogle Scholar
  10. Bobek P, Svobodová HS, Werchan B, Švarcová MG, Kuneš P (2018b) Human-induced changes in fire regime and subsequent alteration of the sandstone landscape of Northern Bohemia (Czech Republic). Holocene 28:427–443CrossRefGoogle Scholar
  11. Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28CrossRefGoogle Scholar
  12. Bozilova E, Tonkov S (2000) Pollen from Lake Sedmo Rilsko reveals southeast European postglacial vegetation in the highest mountain area of the Balkans. New Phytol 148:315–325CrossRefGoogle Scholar
  13. Bozilova E, Tonkov S (2011) Lake Sedmo Rilsko (Bulgaria): lateglacial vegetation history. Grana 50:232–234CrossRefGoogle Scholar
  14. Bozilova E, Tonkov S, Tz Popova (1994) Forest clearance, land use and human occupation during the Roman colonization in Bulgaria. In: Frenzel B (ed) Palaeoclimate research, vol 10. Gustav Fischer Verlag, Stuttgart, pp 37–44Google Scholar
  15. Bozilova E, Tonkov S, Marinova E, Jungner H (2002) Pollen and plant macrofossil analyses of Late Holocene sediments from Lake Panichishte in Northwestern Rila Mountains. Razpr IV Razr SAZU 43(2):37–51Google Scholar
  16. Brown KJ, Giesecke T (2014) Holocene fire disturbance in the boreal forest of central Sweden. Boreas 43:639–651CrossRefGoogle Scholar
  17. Brown RD, Petkova N (2007) Snow cover variability in Bulgarian mountainous regions, 1931–2000. Int J Climatol 27:1215–1229CrossRefGoogle Scholar
  18. Brussel T, Minckley TA, Brewer SC, Long CJ (2018) Community-level functional interactions with fire track long-term structural development and fire adaptation. J Veg Sci 2018:450–458CrossRefGoogle Scholar
  19. Carter VA, Moravcová A, Chiverrell RC, Clear JL, Finsinger W, Dreslerová D, Halsall K, Kuneš P (2018) Holocene-scale fire dynamics of central European temperate spruce-beech forests. Quat Sci Rev 191:15–30CrossRefGoogle Scholar
  20. Christopoulou A, Fulé PZ, Andriopoulos P, Sarris D, Arianoutsou M (2013) Dendrochronology-based fire history of Pinus nigra forests in Mount Taygetos, Southern Greece. For Ecol Manag 293:132–139CrossRefGoogle Scholar
  21. Courtney-Mustaphi CJ, Pisaric MF (2014) A classification for macroscopic charcoal morphologies found in Holocene lacustrine sediments. Prog Phys Geogr 38:734–754CrossRefGoogle Scholar
  22. Duffin KI, Gillson L, Willis KJ (2008) Testing the sensitivity of charcoal as an indicator of fire events in savanna environments: quantitative predictions of fire proximity, area and intensity. Holocene 18:279–291CrossRefGoogle Scholar
  23. Dunn KP, Smyth GK (1996) Randomized quantile residuals. J Comput Graph Stat 5:1–10Google Scholar
  24. Enache MD, Cumming BF (2006) Tracking recorded fires using charcoal morphology from the sedimentary sequence of Prosser Lake, British Columbia (Canada). Quat Res 65:282–292CrossRefGoogle Scholar
  25. Enache MD, Cumming BF (2007) Charcoal morphotypes in lake sediments from British Columbia (Canada): an assessment of their utility for the reconstruction of past fire and precipitation. J Paleolimnol 38:347–363CrossRefGoogle Scholar
  26. Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, ChichesterGoogle Scholar
  27. Feurdean A, Willis KJ (2008) Long-term variability of Abies alba in NW Romania: implications for its conservation management. Divers Distrib 14:1004–1017CrossRefGoogle Scholar
  28. Feurdean A, Spessa A, Magyari EK, Willis KJ, Veres D, Hickler T (2012) Trends in biomass burning in the Carpathian region over the last 15,000 years. Quat Sci Rev 45:111–125CrossRefGoogle Scholar
  29. Feurdean A, Liakka J, Vannière B, Marinova E, Hutchinson SM, Mosburgger V, Hickler T (2013) 12,000-Years of fire regime drivers in the lowlands of Transylvania (Central-Eastern Europe): a data-model approach. Quat Sci Rev 81:48–61CrossRefGoogle Scholar
  30. Feurdean A, Perşoiu A, Tanţău I, Stevens T, Magyari EK, Onac BP, Marković S, Andrič M, Connor S, Fărcaş S, Gałka M, Gaudeny T, Hoek W, Kolaczek P, Kuneš P, Lamentowicz M, Marinova E, Michczyńska DJ, Perşoiu I, Płociennik M, Słowiński M, Stancikaite M, Sumegi P, Svensson A, Tămaş T, Timar A, Tonkov S, Toth M, Veski S, Willis KJ, Zernitskaya V (2014) Climate variability and associated vegetation response throughout Central and Eastern Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quat Sci Rev 106:206–224CrossRefGoogle Scholar
  31. Feurdean A, Veski S, Florescu G, Vannière B, Pfeiffer M, O’Hara RB, Stivrins N, Amon L, Heinsalu A, Vassiljev J, Hickler T (2017a) Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe). Quat Sci Rev 169:378–390CrossRefGoogle Scholar
  32. Feurdean A, Florescu VannièreB, Tanţău I, O‘Hara RB, Pfeiffer M, Hutchinson SM, Gałka M, Moskal-del Hoyo M, Hickler T (2017b) Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. For Ecol Manag 389:15–26CrossRefGoogle Scholar
  33. Feurdean A, Vannière B, Finsinger W, Warren D, Connor SC, Forrest M, Liakka J, Panait A, Werner C, Andrič M, Bobek P, Carter VA, Davis B, Diaconu A-C, Dietze E, Feeser I, Florescu G, Gałka M, Giesecke T, Jahns S, Jamrichová E, Kajukało K, Kaplan J, Karpińska-Kołaczek M, Kołaczek P, Kuneš P, Kupriyanov D, Lamentowicz M, Lemmen C, Magyari EK, Marcisz K, Marinova E, Niamir A, Novenko E, Obremska M, Pędziszewska A, Pfeiffer M, Poska A, Rösch M, Słowiński M, Stančikaitė M, Szal M, Święta-Musznicka J, Tanţău I, Theuerkauf M, Tonkov S, Valkó O, Vassiljev J, Veski S, Vincze I, Wacnik A, Wiethold J, Hickler T (2019) Fire risk modulation by long-term dynamics in land cover and dominant forest type in Eastern and Central Europe, Biogeosci Dis.
  34. Finsinger W, Morales-Molino C, Gałka M, Valsecchi V, Bojovic S, Tinner W (2017) Holocene vegetation and fire dynamics at Crveni Potok, a small mire in the Dinaric Alps (Tara National Park, Serbia). Quat Sci Rev 167:63–77CrossRefGoogle Scholar
  35. Finsinger W, Fevre J, Orbán I, Pál I, Vincze I, Hubay K, Birks HH, Braun M, Tóth M, Magyari EK (2018) Holocene fire-regime changes near the treeline in the Retezat Mts. (Southern Carpathians, Romania). Quat Int 477:94–105CrossRefGoogle Scholar
  36. Florescu G, Vannière B, Feurdean A (2018) Exploring the influence of local controls on fire activity using multiple charcoal records from northern Romanian Carpathians. Quat Int 488:41–57CrossRefGoogle Scholar
  37. Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  38. Groot WJ, Cantin AS, Flannigan MD, Soja AJ, Gowman LM, Newbery A (2013) A comparison of Canadian and Russian boreal forest fie regimes. For Ecol Manag 294:23–34CrossRefGoogle Scholar
  39. Hartig F (2017) DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R Package Version 0.1 5Google Scholar
  40. Hastie TJ, Tibshirani RJ (1990) Generalized additive models, volume 43 of. Monogr Stat Appl Probab. Chapman & Hall/CRC Monographs on Statistics and Applied Probability, pp. 352Google Scholar
  41. He T, Lamont BB (2018) Baptism by fire: the pivotal role of ancient conflagrations in evolution of the Earth’s flora. Natl Sci Rev 5:237–254CrossRefGoogle Scholar
  42. Heiri O, Ilyashuk B, Millet L, Samartin S, Lotter AF (2015) Stacking of discontinuous regional paleoclimate records: chironomid-based summer temperatures from the Alpine region. Holocene 25:137–149CrossRefGoogle Scholar
  43. Higuera P, Brubaker L, Anderson P, Hu F, Brown T (2009) Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79:201–219CrossRefGoogle Scholar
  44. Higuera PE, Gavin DG, Bartlein PJ, Hallett DJ (2011) Peak detection in sediment charcoal records: impacts of alternative data analysis methods on fire history interpretations. Int J Wildland Fire 19:996–1014CrossRefGoogle Scholar
  45. Jalas J, Suominen J (1973) Atlas Florae Europaeae: distribution of vascular plants in Europe. 2. Gymnospermae (Pinaceaeto Ephedraceae). The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, HelsinkiGoogle Scholar
  46. Jensen K, Lynch E, Calcote R, Hotchkiss SC (2007) Interpretation of charcoal morphotypes in sediments from Ferry Lake, Wisconsin, USA: Do different plant fuel sources produce distinctive charcoal morphotypes? Holocene 17:907–915CrossRefGoogle Scholar
  47. Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wild Fire 18:116–126CrossRefGoogle Scholar
  48. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2011) Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. Kelly RF, Higuera PE, Barrett CM, Hu FS (2011) A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records. Quat Res 75:11–17CrossRefGoogle Scholar
  50. Killick R, Eckley I (2014) Changepoint: an R package for changepoint analysis. J Stat Softw 58:1–19CrossRefGoogle Scholar
  51. Kloster S, Brücher T, Brovkin V, Wilkenskjeld S (2015) Controls on fire activity over the Holocene. Clim Past 11:781–788CrossRefGoogle Scholar
  52. Lazarova M, Marinova E, Tonkov S, Snowball I (2015) A 5000-year pollen and plant macrofossil record from the Osogovo Mountain, Southwestern Bulgaria: vegetation history and human impact. Rev Palaeobot Palynol 223:1–9CrossRefGoogle Scholar
  53. Leys B, Finsinger W, Carcaillet C (2014) Historical range of fire frequency is not the Achilles’ heel of the Corsican black pine ecosystem. J Ecol 102:381–395CrossRefGoogle Scholar
  54. Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R, Clark PU, Carlson AE, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J (2009) Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science 325:310–314CrossRefGoogle Scholar
  55. Marcisz K, Gałka M, Pietrala P, Miotk-Szpiganowicz G, Obremska M, Tobolski K, Lamentowicz M (2017) Fire activity and hydrological dynamics in the past 5700 years reconstructed from Sphagnum peatlands along the oceanic–continental climatic gradient in northern Poland. Quat Sci Rev 177:145–157CrossRefGoogle Scholar
  56. Marinova E, Tonkov S (2012) A contribution to the Holocene vegetation history in the Northwestern Pirin Mountain (Bulgaria): the plant macrofossil record from peat-bog Mozgovitsa. Bulgarska Akademiya na Naukite. Dokladi 65:1087–1094Google Scholar
  57. Marinova E, Tonkov S, Bozilova E, Vajsov I (2012) Holocene anthropogenic landscapes in the Balkans: the palaeobotanical evidence from southwestern Bulgaria. Veg Hist Archaeobot 21:413–427CrossRefGoogle Scholar
  58. Marlon JR, Kelly R, Daniau AL, Vannière B, Power MJ, Bartlein P, Higuera P, Blarquez O, Brewer S, Brücher T, Feurdean A, Romera GG, Iglesias V, Maezumi SY, Magi B, Courtney Mustaphi CJ, Zhihai T (2016) Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons. Biogeosciences 13:3225–3244CrossRefGoogle Scholar
  59. Martine D, Bergeron Yves (1989) Fire and the distribution of Juniperus communis L. in the boreal forest of Quebec, Canada. J Biogeogr 16:91–96CrossRefGoogle Scholar
  60. Mauri A, Davis BA, Collins PM, Kaplan JO (2015) The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quat Sci Rev 112:109–127CrossRefGoogle Scholar
  61. Mutch RW (1970) Wildland fires and ecosystems-a hypothesis. Ecology 51:1046–1051CrossRefGoogle Scholar
  62. Olsson F, Gaillard MJ, Lemdahl G, Greisman A, Lanos P, Marguerie D, Marcoux N, Skoglund P, Wäglind J (2010) A continuous record of fire covering the last 10,500 calendar years from southern Sweden—The role of climate and human activities. Palaeogeography, Palaeoclimatology, Palaeoecology 291:128–141CrossRefGoogle Scholar
  63. Panayotov M, Gogushev G, Tsavkov E, Vasileva P, Tsvetanov N, Kulakowski D, Bebi P (2017) Abiotic disturbances in Bulgarian mountain coniferous forests—an overview. For Ecol Manag 388:13–28CrossRefGoogle Scholar
  64. Pausas JG (2015) Bark thickness and fire regime. Funct Ecol 29:315–327. CrossRefGoogle Scholar
  65. Pausas JG, Bladé C, Valdecantos A, Seva JP, Fuentes D, Alloza JA, Vilagrosa A, Bautista S, Cortina J, Vallejo R (2004) Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for an old practice—a review. Plant Ecol 171:209–220CrossRefGoogle Scholar
  66. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial Refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565CrossRefGoogle Scholar
  67. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  68. Reimer PJ, Bard E, Bayliss A (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  69. Rogers BM, Soja AJ, Goulden ML, Randerson JT (2015) Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat Geosci 8:228–234CrossRefGoogle Scholar
  70. Ruprecht, E., Fenesi, A., Fodor, E., Kuhn, T., T.k.lyi, J., 2015. Shape determines fire tolerance of seeds in temperate grasslands that are not prone to fire. Perspect. Plant Ecol. Evol. Syst. 17, 397–404.Google Scholar
  71. Samartin S, Heiri O, Joos F, Renssen H, Franke J, Brönnimann S, Tinner W (2017) Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat Geosci 10:207–212CrossRefGoogle Scholar
  72. Scott AC, Bowman DM, Bond WJ, Pyne SJ, Alexander ME (2004) Fire on earth: an introduction. Wiley, HobokenGoogle Scholar
  73. Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Change 7:395–402CrossRefGoogle Scholar
  74. Shishkov T, Kolev N (2014) The soils of Bulgaria. Springer, DordrechtCrossRefGoogle Scholar
  75. Shlisky A, Waugh J, Gonzalez P, Gonzalez M, Manta M, Santoso H, Schmidt D (2007) Fire, ecosystems and people: threats and strategies for global biodiversity conservation. The Nature Conservancy, ArlingtonGoogle Scholar
  76. Sweeney CA (2004) A key for the identification of stomata of the native conifers of Scandinavia. Rev Palaeobot Palynol 128:281–290CrossRefGoogle Scholar
  77. Tinner W, Theurillat JP (2003) Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arct Antarct Alp Res 35:158–169CrossRefGoogle Scholar
  78. Tinner W, Hubschmid P, Wehrli M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87:273–289CrossRefGoogle Scholar
  79. Tinner W, Colombaroli D, Heiri O, Henne PD, Steinacher M, Untenecker J, Vescovi E, Allen J, Carraro G, Conedera M, Joos F, Lotter AF, Luterbacher J, Samartin S, Valsecchi V (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83:419CrossRefGoogle Scholar
  80. Tonkov S, Marinova E (2005) Pollen and plant macrofossil analyses of mid-Holocene radiocarbon dated profiles from two subalpine lakes in Rila Mountains, Bulgaria. Holocene 15:663–671CrossRefGoogle Scholar
  81. Tonkov S, Bozilova E, Pavlova D, Kozuharova E (2000) Surface pollen samples from the valley of the Rilska Reka river, Central Rila Mts. (Southwestern Bulgaria). Ann Sofia Univ Fac Biol 91:63–74Google Scholar
  82. Tonkov S, Hicks S, Bozilova E, Atanassova J (2001) Pollen monitoring in the Central Rila Mts., Southwestern Bulgaria: case studies from pollen traps and surface samples for the period 1994–1999. Rev Palaeobot Palynol 117:167–182CrossRefGoogle Scholar
  83. Tonkov S, Stoyanova N, Bozilova E (2009) Pollen monitoring experiment in the coniferous forests of NW Rila Mts (Bulgaria). Phytol Balc 15:333–336Google Scholar
  84. Tonkov S, Bozilova E, Possnert G (2013) Postglacial vegetation history as recorded from the subalpine Lake Ribno (NW Rila Mts), Bulgaria. Open Life Sci 8:64–77Google Scholar
  85. Tonkov S, Bozilova E, Possnert G (2016a) Lateglacial to Holocene vegetation development in the Central Rila Mountains, Bulgaria. Holocene 26:17–28CrossRefGoogle Scholar
  86. Tonkov S, Bozilova E, Pavlova D, Raev I (2016b) Long-term pollen monitoring experiments for the period 1994–2008 in the Rila Mountains, Bulgaria. Eurasian J For Sci 4:1–16CrossRefGoogle Scholar
  87. Tonkov S, Possnert G, Bozilova E, Marinova E, Pavlova D (2018a) On the Holocene vegetation history of the Central Rila Mountains, Bulgaria: the palaeoecological record of peat bog Vodniza (2113 m). Rev Palaeobot Palynol 250:16–26CrossRefGoogle Scholar
  88. Tonkov S, Marinova E, Feurdean A (2018b) Peat bog Vapsko-1, Rila Mountains (Bulgaria). Grana 57:158–160CrossRefGoogle Scholar
  89. Tonkov S, Marinova E, Feurdean A (2019) Peat bog Vapsko-2, Rila Mountains (Bulgaria). Grana  58: 393-395 Google Scholar
  90. Tóth M, Magyari EK, Buczkó K, Braun M, Panagiotopoulos K, Heiri O (2015) Chironomid-inferred Holocene temperature changes in the South Carpathians (Romania). Holocene 25:569–582CrossRefGoogle Scholar
  91. Touchan R, Baisan C, Mitsopoulos ID, Dimitrakopoulos AP (2012) Fire history in European black pine (Pinus nigra Arn.) Forests of the Valia Kalda, Pindus Mountains, Greece. Tree-Ring Res 68:45–50CrossRefGoogle Scholar
  92. Valko O, Török P, Deák B, Tóthmérész B (2014) Prospects and limitations of prescribed burning as a management tool in European grasslands. Basic Appl Ecol 15:26–33CrossRefGoogle Scholar
  93. Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M (2008) Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat Sci Rev 27:1181–1196CrossRefGoogle Scholar
  94. Vannière B, Power MJ, Roberts N, Tinner W, Carrión J, Magny M, Bartlein P, Colombaroli D, Daniau AL, Finsinger W, Gil-Romera G (2011) Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500–2500 cal. BP). Holocene 2011:53–73CrossRefGoogle Scholar
  95. Vannière B, Blarquez O, Rius D, Doyen E, Brücher T, Colombaroli D, Connor S, Feurdean A, Hickler T, Kaltenrieder P, Lemmen C (2016) 7000-year human legacy of elevation-dependent European fire regimes. Quat Sci Rev 132:206–212CrossRefGoogle Scholar
  96. Velchev V, Tonkov S (1986) Vegetation and flora of Southwestern Bulgaria. In: Botev B (ed) Fauna of southwestern Bulgaria. Bulgarian Academy of Sciences, Sofia, pp 20–43 (in Bulgarian with English summary) Google Scholar
  97. Wallenius T (2011) Major decline in fires in coniferous forests-reconstructing the phenomenon and seeking for the cause. Silva Fennica 45:139–155CrossRefGoogle Scholar
  98. Wirth C (2005) Fire regime and tree diversity in boreal forests: implications for the carbon cycle. In: Forest diversity and function. Springer, Berlin, pp 309–344Google Scholar
  99. Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. Chapman and Hall/CRC, LondonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Senckenberg Biodiversity and Climate Research Centre (BiK-F)Frankfurt am MainGermany
  2. 2.Department of GeologyBabeş-Bolyai UniversityCluj-NapocaRomania
  3. 3.Department of Physical GeographyGoethe UniversityFrankfurt am MainGermany
  4. 4.Laboratory of Palynology, Faculty of BiologySofia University St. Kliment OhridskiSofiaBulgaria
  5. 5.CNRS Chrono-Environnement, UMR 6249 and MSHE USR 3124Université Bourgogne Franche-ComtéBesançonFrance
  6. 6.State Office for Cultural Heritage Baden-Württemberg, Referat 84.1/Laboratory for ArchaeobotanyGeienhofen-HemmenhofenGermany

Personalised recommendations