Vulnerability of forest ecosystems to fire in the French Alps

Abstract

Forest fires are expected to be more frequent and more intense with climate change, including in temperate and mountain forest ecosystems. In the Alps, forest vulnerability to fire resulting from interactions between climate, fuel types, vegetation structure and tree resistance to fire is little understood. This paper aims at identifying trends in the vulnerability of Alpine forest ecosystems to fire at different scales (tree species, stand level and biogeographic level) and according to three different climatic conditions (cold season, average summer and extremely dry summer). To explore Alpine forest vulnerability to fire, we used surface fuel measurements, forest inventory and fire weather data to simulate fire behaviour and ultimately post-fire tree mortality across 4438 forest plots in the French Alps. The results showed that cold season fires (about 50% of the fires in the French Alps) have a limited impact except on low-elevation forests of the Southern Alps (mainly Oak, Scots pine). In average summer conditions, mixed and broadleaved forests of low elevations suffer the highest mortality rates (up to 75% in coppices). Finally, summer fires occurring in extremely dry conditions promote high mortality across all forest communities. Lowest mortality rates were observed in high forest stands composed of tree species presenting adaptation to surface fires (e.g. thick bark, high canopy) such as Larch forests of the internal Alps. This study provides insights on the vulnerability of the main tree species and forest ecosystems of the French Alps useful for the adaptation of forest management practices to climate changes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ager AA, Vaillant NM, Finney MA (2011) Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning. J Combust. https://doi.org/10.1155/2011/572452

    Article  Google Scholar 

  2. Alcasena FJ, Salis M, Nauslar NJ, Aguinaga AE, Vega-García C (2016) Quantifying economic losses from wildfires in black pine afforestations of northern Spain. Forest Policy Econ 73:153–167. https://doi.org/10.1016/j.forpol.2016.09.005

    Article  Google Scholar 

  3. Alexander ME (1982) Calculating and interpreting forest fire intensities. Can J Bot 60(4):349–357. https://doi.org/10.1139/b82-048

    Article  Google Scholar 

  4. Arndt N, Vacik H, Koch V, Arpaci A, Gossow H (2013) Modeling human-caused forest fire ignition for assessing forest fire danger in Austria. IForest 6(6):315–325. https://doi.org/10.3832/ifor0936-006

    Article  Google Scholar 

  5. Arpaci A, Valese E, H V (2011) Potential Fire Intensities in the Alpine Region based on characteristic fuels in Austria and Italy. In: Proceedings of fifth international wildfire conference, South Africa

  6. Ascoli D, Castagneri D, Valsecchi C, Conedera M, Bovio G (2013) Post-fire restoration of beech stands in the southern alps by natural regeneration. Ecol Eng 54:210–217. https://doi.org/10.1016/j.ecoleng.2013.01.032

    Article  Google Scholar 

  7. Bauer G, Speck T, Blömer J, Bertling J, Speck O (2010) Insulation capability of the bark of trees with different fire adaptation. J Mater Sci 45(21):5950–5959. https://doi.org/10.1007/s10853-010-4680-4

    CAS  Article  Google Scholar 

  8. BDIFF (2017) BDIFF: Base de données sur les incendies de forêt en France. http://bdiff.ifn.fr/

  9. Bedia J, Herrera S, Camia A, Moreno J, Gutiérrez J (2014) Forest fire danger projections in the mediterranean using ENSEMBLES regional climate change scenarios. Clim Change 122(1–2):185–199. https://doi.org/10.1007/s10584-013-1005-z

    Article  Google Scholar 

  10. Beniston M (2005) Climatic change and its possible impacts in the Alpine region. J Alp Res 93(2):25–32. https://doi.org/10.3406/rga.2005.2342

    Article  Google Scholar 

  11. Bessie WC, Johnson EA (1995) The relative importance of fuels and weather on fire behavior in subalpine forests. Ecology 76(3):747–762. https://doi.org/10.2307/1939341

    Article  Google Scholar 

  12. Bova AS, Dickinson MB (2005) Linking surface-fire behavior, stem heating, and tissue necrosis. Can J Forest Res 35(4):814–822. https://doi.org/10.1139/x05-004

    Article  Google Scholar 

  13. Briner S, Huber R, Bebi P, Elkin C, Schmatz DR, Grêt-Regamey A (2013) Trade-offs between ecosystem services in a mountain region. Ecol Soc https://doi.org/10.5751/ES-05576-180335

  14. Brown JK, DeByle NV (1987) Fire damage, mortality, and suckering in aspen. Can J For Res 17(9):1100–1109. https://doi.org/10.1139/x87-168

    Article  Google Scholar 

  15. Brown JK, Oberheu RD, Johnston CM (1982) Handbook for inventorying surface fuels and biomass in the Interior West. Gen Tech Rep INT-129 Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Forest and Range Experimental Station 129, https://doi.org/10.2737/INT-GTR-129

  16. Byram G (1959) Combustion of forest fuels. In: Davis K (ed) Forest fire: control and use. McGraw-Hill, New York, pp 61–89

    Google Scholar 

  17. Catry F, Rego F, Moreira F, Fernandes P, Pausas J (2010) Post-fire tree mortality in mixed forests of central Portugal. For Ecol Manage 260(7):1184–1192. https://doi.org/10.1016/j.foreco.2010.07.010

    Article  Google Scholar 

  18. Conedera M, Lucini L, Valese E, Ascoli D, Pezzatti G (2010) Fire resistance and vegetative recruitment ability of different deciduous trees species after low-to moderate-intensity surface fires in southern Switzerland. In: VI international conference on forest fire research, Coimbra, Portugal

  19. Conedera M, Krebs P, Valese E, Cocca G, Schunk C, Menzel A, Vacik H, Cane D, Japelj A, Muri B, Ricotta C, Oliveri S, Pezzatti G (2018) Characterizing alpine pyrogeography from fire statistics. Appl Geogr 98:87–99. https://doi.org/10.1016/j.apgeog.2018.07.011

    Article  Google Scholar 

  20. Curt T, Fréjaville T, Lahaye S (2016) Modelling the spatial patterns of ignition causes and fire regime features in southern France: implications for fire prevention policy. Int J Wildland Fire 25(7):785–796. https://doi.org/10.1071/WF15205

    Article  Google Scholar 

  21. Dalziel BD, Perera AH (2009) Tree mortality following boreal forest fires reveals scale-dependant interactions between community structure and fire intensity. Ecosystems 12(6):973–981. https://doi.org/10.1007/s10021-009-9272-2

    Article  Google Scholar 

  22. Dickinson M, Johnson E (2001) Chapter 14–fire effects on trees. In: Johnson EA, Miyanishi K (eds) Forest fires. Academic Press, San Diego, pp 477–525, https://doi.org/10.1016/B978-012386660-8/50016-7

    Chapter  Google Scholar 

  23. Dickinson MB, Johnson EA (2004) Temperature-dependent rate models of vascular cambium cell mortality. Can J For Res 34(3):546–559. https://doi.org/10.1139/x03-223

    Article  Google Scholar 

  24. Dupire S, Bourrier F, Monnet JM, Bigot S, Borgniet L, Berger F, Curt T (2016a) Novel quantitative indicators to characterize the protective effect of mountain forests against rockfall. Ecol Indic 67:98–107. https://doi.org/10.1016/j.ecolind.2016.02.023

    Article  Google Scholar 

  25. Dupire S, Bourrier F, Monnet JM, Bigot S, Borgniet L, Berger F, Curt T (2016b) The protective effect of forests against rockfalls across the French Alps: Influence of forest diversity. For Ecol Manage 382:269–279. https://doi.org/10.1016/j.foreco.2016.10.020

    Article  Google Scholar 

  26. Dupire S, Curt T, Bigot S (2017) Spatio-temporal trends in fire weather in the French alps. Sci Total Environ 595(Suppl C):801–817. https://doi.org/10.1016/j.scitotenv.2017.04.027

    CAS  Article  PubMed  Google Scholar 

  27. Fernandes PM, Vega JA, Jiménez E, Rigolot E (2008) Fire resistance of European pines. For Ecol Manage 256(3):246–255. https://doi.org/10.1016/j.foreco.2008.04.032

    Article  Google Scholar 

  28. Finney MA (2006) An overview of FlamMap fire modeling capabilities. In: Andrews, Patricia L; Butler, Bret W, Comps fuels management-how to measure success: conference proceedings 28-30 March 2006; Portland, OR Proceedings RMRS-P-41 Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station 041:213–220

  29. Forradellas AC, Terrén DM, Oliveres J, Castellnou M (2016) Fire effects in pinus uncinata ram plantations. For Syst 25(1):06. https://doi.org/10.5424/fs/2016251-08919

    Article  Google Scholar 

  30. Fréjaville T (2015) Vulnérabilité des forêts de montagne des alpes occidentales au changement de régime d’incendie. PhD thesis, Aix-Marseille Université, Aix-Marseille, France, https://doi.org/10.13140/RG.2.1.2432.0727

  31. Fréjaville T, Curt T (2015) Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin). Clim Change 129(1):239–251. https://doi.org/10.1007/s10584-015-1332-3

    Article  Google Scholar 

  32. Fréjaville T, Curt T (2017) Seasonal changes in the human alteration of fire regimes beyond the climate forcing. Environ Res Lett. https://doi.org/10.1088/1748-9326/aa5d23

    Article  Google Scholar 

  33. Fréjaville T, Curt T, Carcaillet C (2013) Bark flammability as a fire-response trait for subalpine trees. Front Plant Sci 4:466. https://doi.org/10.3389/fpls.2013.00466

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fréjaville T, Curt T, Carcaillet C (2016) Tree cover and seasonal precipitation drive understorey flammability in Alpine mountain forests. J Biogeogr 43(9):1869–1880. https://doi.org/10.1111/jbi.12745

    Article  Google Scholar 

  35. Fréjaville T, Curt T, Carcaillet C (2018a) Higher potential fire intensity at the dry range margins of european mountain trees. J Biogeogr. https://doi.org/10.1111/jbi.13386

    Article  Google Scholar 

  36. Fréjaville T, Vilà-Cabrera A, Curt T, Carcaillet C (2018b) Aridity and competition drive fire resistance trait covariation in mountain trees. Ecosphere 9(12):e02493. https://doi.org/10.1002/ecs2.2493

    Article  Google Scholar 

  37. Ganteaume A, Camia A, Jappiot M, San-Miguel-Ayanz J, Long-Fournel M, Lampin C (2013) A review of the main driving factors of forest fire ignition over Europe. Environ Manage 51(3):651–662. https://doi.org/10.1007/s00267-012-9961-z

    Article  PubMed  Google Scholar 

  38. Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European alps: a review. Sci Total Environ 493:1138–1151. https://doi.org/10.1016/j.scitotenv.2013.07.050

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Granström A (2001) Fire management for biodiversity in the european boreal forest. Scand J For Resment 16(sup003):62–69. https://doi.org/10.1080/028275801300090627

    Article  Google Scholar 

  40. Gutsell S, Johnson E (1996) How fire scars are formed: coupling a disturbance process to its ecological effect. Can J For Res 26(2):166–174. https://doi.org/10.1139/x26-020

    Article  Google Scholar 

  41. Hille M, den Ouden J (2004) Improved recruitment and early growth of scots pine (Pinus sylvestris l.) seedlings after fire and soil scarification. Eur J For Res 3:213–218 10.1007/s10342-004-0036-4

    Article  Google Scholar 

  42. Inbar M, Tamir M, Wittenberg L (1998) Runoff and erosion processes after a forest fire in Mount Carmel, a mediterranean area. Geomorphology 24(1):17–33. https://doi.org/10.1016/S0169-555X(97)00098-6

    Article  Google Scholar 

  43. Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire 18(1):116–126. https://doi.org/10.1071/WF07049

    Article  Google Scholar 

  44. Kohler T, Giger M, Hurni H, Ott C, Wiesmann U, Wymann von Dach S, Maselli D (2010) Mountains and climate change: a global concern. Mount Res Dev 30(1):53–55. https://doi.org/10.1659/MRD-JOURNAL-D-09-00086.1

    Article  Google Scholar 

  45. Kolström T, Kellomäki S (1993) Tree survival in wildfires. Silva Fennica 27(4), https://doi.org/10.14214/sf.a15682

  46. Linder P, Jonsson P, Niklasson M (1998) Tree mortality after prescribed burning in an old-growth Scots pine forest in northern Sweden. Silva Fennica 32(4), https://doi.org/10.14214/sf.675

  47. Maringer J, Ascoli D, Dorren LKA, Bebi P, Conedera M (2016a) Temporal trends in the protective capacity of burnt beech forests (Fagus sylvatica L.) against rockfall. Eur J Forest Res pp 1–17, https://doi.org/10.1007/s10342-016-0962-y

    Article  Google Scholar 

  48. Maringer J, Ascoli D, Küffer N, Schmidtlein S, Conedera M (2016b) What drives european beech (Fagus sylvatica l) mortality after forest fires of varying severity? Forest Ecol Manage 368(Suppl C):81–93. https://doi.org/10.1016/j.foreco.2016.03.008

    Article  Google Scholar 

  49. Maringer J, Conedera M, Ascoli D, Schmatz DR, Wohlgemuth T (2016c) Resilience of European beech forests (Fagus sylvatica L.) after fire in a global change context. Int J Wildland Fire 25(6):699–710. https://doi.org/10.1071/WF15127

    Article  Google Scholar 

  50. McHugh CW, Kolb TE, Wilson JL (2003) Bark beetle attacks on ponderosa pine following fire in northern arizona. Environ Entomol 32(3):510–522. https://doi.org/10.1603/0046-225X-32.3.510

    Article  Google Scholar 

  51. McRae DJ, Alexander ME, Stocks BJ (1979) Measurement and description of fuels and fire behavior on prescribed burns: a handbook. Tech. rep., Canadian Forestry Service, Great Lakes Forest Research Centre, Sault Ste. Marie, ON

  52. Michaletz ST, Johnson EA (2007) How forest fires kill trees: a review of the fundamental biophysical processes. Scand J Forest Res 22(6):500–515. https://doi.org/10.1080/02827580701803544

    Article  Google Scholar 

  53. Miller C, Ager AA (2013) A review of recent advances in risk analysis for wildfire management. Int J Wildland Fire 22:1–14. https://doi.org/10.1071/WF11114

    Article  Google Scholar 

  54. Mitsopoulos I, Mallinis G, Karali A, Giannakopoulos C, Arianoutsou M (2016) Mapping fire behaviour under changing climate in a mediterranean landscape in Greece. Reg Environ Change 16(7):1929–1940. https://doi.org/10.1007/s10113-015-0884-0

    Article  Google Scholar 

  55. Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape-wildfire interactions in southern Europe: implications for landscape management. J Environ Manage 92(10):2389–2402. https://doi.org/10.1016/j.jenvman.2011.06.028

    Article  PubMed  Google Scholar 

  56. Moris JV, Vacchiano G, Ravetto Enri S, Lonati M, Motta R, Ascoli D (2017) Resilience of european larch (v mill.) forests to wildfires in the western alps. New Forests 48(5):663–683. https://doi.org/10.1007/s11056-017-9591-7

    Article  Google Scholar 

  57. Moritz MA, Hessburg PF, Povak NA (2011) Native Fire Regimes and Landscape Resilience, Springer Netherlands, Dordrecht, pp 51–86. https://doi.org/10.1007/978-94-007-0301-8_3

    Google Scholar 

  58. Mucherino A, Papajorgji PJ, Pardalos PM (2009) k-Nearest Neighbor Classification, Springer, New York, pp 83–106. https://doi.org/10.1007/978-0-387-88615-2_4

    Chapter  Google Scholar 

  59. Ordóñez JL, Retana J, Espelta JM (2005) Effects of tree size, crown damage, and tree location on post-fire survival and cone production of pinus nigra trees. For Ecol Manage 206(1):109–117. https://doi.org/10.1016/j.foreco.2004.10.067

    Article  Google Scholar 

  60. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, others (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC

  61. Peterson DL, Ryan KC (1986) Modeling postfire conifer mortality for long-range planning. Environ Manage 10(6):797–808. https://doi.org/10.1007/BF01867732

    Article  Google Scholar 

  62. Poumadère M, Mays C, Le Mer S, Blong R (2005) The 2003 heat wave in France: dangerous climate change here and now. Risk Anal 25(6):1483–1494. https://doi.org/10.1111/j.1539-6924.2005.00694.x

    Article  PubMed  Google Scholar 

  63. Power MJ, Marlon J, Ortiz N, Bartlein PJ, Harrison SP, Mayle FE, Ballouche A, Bradshaw RHW, Carcaillet C et al (2008) Changes in fire regimes since the last glacial maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim Dyn 30(7):887–907

    Article  Google Scholar 

  64. Prométhée (2017) PROMÉTHÉE 2 : La banque de données sur les incendies de forêts en région Méditerranéenne en France. http://www.promethee.com/

  65. Quintana-Segui P, Le Moigne P, Durand Y, Martin E, Habets F, Baillon M, Canellas C, Franchisteguy L, Morel S (2008) Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France. J Appl Meteorol Climatol 47(1):92–107. https://doi.org/10.1175/2007JAMC1636.1

    Article  Google Scholar 

  66. Reineking B, Weibel P, Conedera M, Bugmann H (2010) Environmental determinants of lightning V. Human-induced forest fire ignitions differ in a temperate mountain region of Switzerland. Int J Wildland Fire 19(5):541–557. https://doi.org/10.1071/WF08206

    Article  Google Scholar 

  67. Rigolot E (2004) Predicting postfire mortality of Pinus halepensis mill and Pinus pinea l. Plant Ecol 171(1):139–151, https://doi.org/10.1023/B:VEGE.0000029382.59284.71

    Article  Google Scholar 

  68. Robert N, Vidal C, Colin A, Jean-Christophe H, Hamza N, Cluzeau C (2010) National Forest Inventories reports : France. In: Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (eds) National forest inventories—pathways for common reporting, Springer, pp 207–221, https://doi.org/10.1007/978-90-481-3233-1

    Google Scholar 

  69. Rothermel RC (1991) Predicting behavior and size of crown fires in the northern rocky mountains. Tech. rep., USDA Forest Service. Intermountain Research Station

  70. Rothermel RC, et al. (1972) A mathematical model for predicting fire spread in wildland fuels. Tech. rep., USDA Forest Service. Intermountain Research Station

  71. Saura C, Yvon JM, de Crouy CP, Wagner V, Fougere E, Pascal M (2018) Quantitative health impact assessment of outdoor air pollution in the Arve valley, France. Revue d’Épidémiologie et de Santé Publique 66:S331–S332. https://doi.org/10.1016/j.respe.2018.05.253

    Article  Google Scholar 

  72. Sidoroff K, Kuuluvainen T, Tanskanen H, Vanha-Majamaa I (2007) Tree mortality after low-intensity prescribed fires in managed Pinus sylvestris stands in southern Finland. Scand J Forest Res 22(1):2–12. https://doi.org/10.1080/02827580500365935

    Article  Google Scholar 

  73. Spalt KW, Reifsnyder WE (1962) Bark characteristics and fire resistance: a literature survey. Tech. rep, Southern Forest Experiment Station, USDA Forest Service

  74. Swezy DM, Agee JK (1991) Prescribed-fire effects on fine-root and tree mortality in old-growth ponderosa pine. Can J For Res 21(5):626–634. https://doi.org/10.1139/x91-086

    Article  Google Scholar 

  75. Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87(2):273–289. https://doi.org/10.1046/j.1365-2745.1999.00346.x

    Article  Google Scholar 

  76. Tinner W, Conedera M, Gobet E, Hubschmid P, Wehrli M, Ammann B (2000) A palaeoecological attempt to classify fire sensitivity of trees in the southern alps. Holocene 10(5):565–574. https://doi.org/10.1191/095968300674242447

    Article  Google Scholar 

  77. Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and south of the alps since the last ice age. Holocene 15(8):1214–1226. https://doi.org/10.1191/0959683605hl892rp

    Article  Google Scholar 

  78. Valese E, Conedera M, Held AC, Ascoli D (2014) Fire, humans and landscape in the European Alpine region during the Holocene. Anthropocene 6:63–74. https://doi.org/10.1016/j.ancene.2014.06.006

    Article  Google Scholar 

  79. Valor T, González-Olabarria JR, Piqué M, Casals P (2017) The effects of burning season and severity on the mortality over time of Pinus nigra spp. salzmannii (Dunal) Franco and P. sylvestris l. For Ecol Manage 406(Suppl C):172–183, https://doi.org/10.1016/j.foreco.2017.08.027

    Article  Google Scholar 

  80. Van Wagner C (1987) Development and structure of the Canadian Forest Fire Weather Index System, vol 35. Canadian Forestry Service, Forestry Technical Report, p 35

  81. Van Wagner CE (1977) Conditions for the start and spread of crown fire. Can J For Res 7(1):23–34. https://doi.org/10.1139/x77-004

    Article  Google Scholar 

  82. Varner JM, Putz FE, O’Brien JJ, Hiers JK, Mitchell RJ, Gordon DR (2009) Post-fire tree stress and growth following smoldering duff fires. For Ecol Manage 258(11):2467–2474. https://doi.org/10.1016/j.foreco.2009.08.028

    Article  Google Scholar 

  83. Vidal JP, Martin E, Franchistéguy L, Baillon M, Soubeyroux JM (2010) A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30(11):1627–1644. https://doi.org/10.1002/joc.2003

    Article  Google Scholar 

  84. Wallenius TH, Pitkänen A, Kuuluvainen T, Pennanen J, Karttunen H (2005) Fire history and forest age distribution of an unmanaged Picea abies dominated landscape. Can J For Res 35(7):1540–1552. https://doi.org/10.1139/x05-050

    Article  Google Scholar 

  85. Wastl C, Schunk C, Leuchner M, Pezzatti GB, Menzel A (2012) Recent climate change: long-term trends in meteorological forest fire danger in the Alps. Agric For Meteorol 162–163:1–13. https://doi.org/10.1016/j.agrformet.2012.04.001

    Article  Google Scholar 

  86. Wick L, Möhl A (2006) The mid-holocene extinction of silver fir (abies alba) in the southern alps: a consequence of forest fires? palaeobotanical records and forest simulations. Veg Hist Archaeobot 15(4):435. https://doi.org/10.1007/s00334-006-0051-0

    Article  Google Scholar 

  87. Wotton BM (2009) Interpreting and using outputs from the canadian forest fire danger rating system in research applications. Environ Ecol Stat 16(2):107–131. https://doi.org/10.1007/s10651-007-0084-2

    CAS  Article  Google Scholar 

  88. Zumbrunnen T, Bugmann H, Conedera M, Bürgi M (2009) Linking forest fire regimes and climate–a historical analysis in a dry inner alpine valley. Ecosystems 12(1):73–86. https://doi.org/10.1007/s10021-008-9207-3

    Article  Google Scholar 

  89. Zumbrunnen T, Menéndez P, Bugmann H, Conedera M, Gimmi U, Bürgi M (2012) Human impacts on fire occurrence: a case study of hundred years of forest fires in a dry alpine valley in Switzerland. Reg Environ Change 12(4):935–949. https://doi.org/10.1007/s10113-012-0307-4

    Article  Google Scholar 

  90. Zylstra P, Bradstock RA, Bedward M, Penman TD, Doherty MD, Weber RO, Gill AM, Cary GJ (2016) Biophysical mechanistic modelling quantifies the effects of plant traits on fire severity: species, not surface fuel loads, determine flame dimensions in eucalypt forests. PLoS One 11(8):24. https://doi.org/10.1371/journal.pone.0160715

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the H2020 project NAIAD (Grant No 730497) from the European Union’s Horizon 2020 research and innovation programme. We acknowledge the DCSC-AVH and CEN from the Grenoble Center of Météo France for providing us SAFRAN data as well as useful advices for their manipulation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sylvain Dupire.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Lluís Coll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 330 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dupire, S., Curt, T., Bigot, S. et al. Vulnerability of forest ecosystems to fire in the French Alps. Eur J Forest Res 138, 813–830 (2019). https://doi.org/10.1007/s10342-019-01206-1

Download citation

Keywords

  • Mountain forest
  • Vulnerability
  • Forest fire
  • Tree mortality
  • Climate change
  • Alps