European Journal of Forest Research

, Volume 138, Issue 4, pp 547–560 | Cite as

What is the potential of silver fir to thrive under warmer and drier climate?

  • Yann VitasseEmail author
  • Alessandra Bottero
  • Martine Rebetez
  • Marco Conedera
  • Sabine Augustin
  • Peter Brang
  • Willy Tinner


Foresters from many countries are seeking for tree species or provenances able to cope with expected climate change. While it becomes clear that some temperate tree species will increasingly suffer from climate warming, the fate of the ecologically and economically important silver fir (Abies alba Mill.) remains uncertain and debated because the ecological requirements of this species, as well as its resilience to drought, are still unclear. On the one hand, paleoecological studies reveal that this species was widely distributed under much warmer climate, suggesting a high potential to cope with ongoing and future climate warming. On the other hand, species distribution models generally predict a strong decline of its climatic suitability in the future. This paper aims to clarify the potential of this species to thrive in central and western Europe under predicted climate warming by reviewing the knowledge gained from different fields. Based on insight from different fields, we argue that silver fir has a great potential to thrive under warmer conditions in western and central Europe provided sufficient rainfall, as forecasted by climate models for most regions by 2100. For instance, dendroecological studies demonstrate that silver fir is more resistant and resilient to drought compared to co-occurring species such as Norway spruce, European beech and larch. The most prominent obstacle for increasing the proportion of fir in mixed forests nowadays is ungulate browsing that often prevents its upgrowth.


Climate warming Dendroecology Drought European forests Paleoecology Abies alba 



This review was funded by the research program ‘Forest and Climate Change’ of the Federal Office for the Environment and the Swiss Federal Research Institute WSL, and was also supported by the SwissForestLab. This paper was initially published in French in Schweizerische Zeitschrift fur Forstwesen (Vitasse et al. 2018a) and was adapted with the agreement of this journal to upscale the results to an international readership across Europe.

Data accessibility

The sources of the data used in Fig. 3 are cited in the caption legend of the figure.

Author contributions

PB and SA conceived the idea. YV led the writing with input from all the other authors. AB collected the data shown in Fig. 3 and drew Fig. 3.


  1. Alba-Sánchez F, López-Sáez JA, Pando BBd, Linares JC, Nieto-Lugilde D, López-Merino L (2010) Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Divers Distrib 16(2):214–228CrossRefGoogle Scholar
  2. Ammer C (1996) Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. For Ecol Manag 88(1–2):43–53CrossRefGoogle Scholar
  3. Aussenac G (2002) Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann For Sci 59(8):823–832CrossRefGoogle Scholar
  4. Badeau V, Dupouey J-L, Cluzeau C, Drappier J (2007) Aires potentielles de répartition des essences forestières d’ici 2100. RDV techniques ONF (hors-série n°3):62–66Google Scholar
  5. Becker MG, Landmann G, Levy G (1989) Silver fir decline in the Vosges mountains (France): role of climate and silviculture. Water Air Soil Pollut 48:77–86CrossRefGoogle Scholar
  6. Belletti P, Ferrazzini D, Ducci F, De Rogatis A, Mucciarelli M (2017) Genetic diversity of Italian populations of Abies alba. Dendrobiology 77:147–159CrossRefGoogle Scholar
  7. Bennett K, Tzedakis P, Willis K (1991) Quaternary refugia of north European trees. J Biogeogr 18:103–115CrossRefGoogle Scholar
  8. Birks HJB, Tinner W (2016) Past forests of Europe. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publication Office of the European Union, Luxembourg, pp 36–39Google Scholar
  9. Bloesch U (1983) Beitrag zum Problem des Weisstannensterbens: Untersuchungen über die langfristige Entwicklung der absterbenden Weisstannen auf repräsentativen Standorten inner- und ausserhalb des Optimalbereiches der Weisstanne auf Grund der Zwangsnutzungensstatistiken im Kanton Neuenburg, sowie Abklärung der Kausalzusammenhänge, insbesondere mit klimatischen Hypothesen. Professur für Waldbau. – ETH Zürich, p 74Google Scholar
  10. Bosela M, Popa I, Gömöry D, Longauer R, Tobin B, Kyncl J, Kyncl T, Nechita C, Petráš R, Sidor CG, Šebeň V, Büntgen U (2016) Effects of post-glacial phylogeny and genetic diversity on the growth variability and climate sensitivity of European silver fir. J Ecol 104(3):716–724CrossRefGoogle Scholar
  11. Bosela M, Lukac M, Castagneri D, Sedmák R, Biber P, Carrer M, Konôpka B, Nola P, Nagel TA, Popa I, Roibu CC, Svoboda M, Trotsiuk V, Büntgen U (2018) Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Sci Total Environ 615:1460–1469CrossRefPubMedGoogle Scholar
  12. Bosela M, Lukac M, Castagneri D, Sedmák R, Biber P, Carrer M, Konôpka B, Nola P, Nagel TA, Popa I, Roibu CC, Svoboda M, Trotsiuk V, Büntgen U (2018) Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Sci Total Environ 615(Supplement C):1460–1469CrossRefPubMedGoogle Scholar
  13. Bourdenet P (1998) Essais d’adaptation et peuplements de référence de sapins méditerranéens mis en place par l’Office National des Forêts. Forêt méditerranéenne 19(2):183–188Google Scholar
  14. Brousseau L, Postolache D, Lascoux M, Drouzas AD, Källman T, Leonarduzzi C, Liepelt S, Piotti A, Popescu F, Roschanski AM (2016) Local adaptation in European firs assessed through extensive sampling across altitudinal gradients in southern Europe. PLoS ONE 11(7):e0158216CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bugmann H, Brang P, Elkin C, Henne PD, Jakoby O, Lévesque M, Lischke H, Psomas A, Rigling A, Wermelinger B (2015). Climate change impacts on tree species, forest properties, and ecosystem services. In: OCCR, FOEN, MeteoSwiss, C2SM, Agroscope, ProClim (eds) CH2014-impacts, toward quantitative scenarios of climate change impacts in SwitzerlandGoogle Scholar
  16. Büntgen U, Tegel W, Kaplan JO, Schaub M, Hagedorn F, Bürgi M, Brázdil R, Helle G, Carrer M, Heussner K-U, Hofmann J, Kontic R, Kyncl T, Kyncl J, Camarero JJ, Tinner W, Esper J, Liebhold A (2014) Placing unprecedented recent fir growth in a European-wide and Holocene-long context. Front Ecol Environ 12(2):100–106CrossRefGoogle Scholar
  17. Bürgi M, Schuler A (2003) Driving forces of forest management—an analysis of regeneration practices in the forests of the Swiss Central Plateau during the 19th and 20th century. For Ecol Manag 176(1):173–183CrossRefGoogle Scholar
  18. Cailleret M, Davi H (2011) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees Struct Funct 25(2):265–276CrossRefGoogle Scholar
  19. Cailleret M, Nourtier M, Amm A, Durand-Gillmann M, Davi H (2014) Drought-induced decline and mortality of silver fir differ among three sites in Southern France. Ann For Sci 71(6):643–657CrossRefGoogle Scholar
  20. Camarero JJ, Bigler C, Linares JC, Gil-Pelegrín E (2011) Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests. For Ecol Manag 262(5):759–769CrossRefGoogle Scholar
  21. Camarero JJ, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM (2015) To die or not to die: early warnings of tree dieback in response to a severe drought. J Ecol 103(1):44–57CrossRefGoogle Scholar
  22. Carcaillet C, Muller SD (2005) Holocene tree-limit and distribution of Abies alba in the inner French Alps: anthropogenic or climatic changes? Boreas 34(4):468–476CrossRefGoogle Scholar
  23. Caudullo G, Tinner W (2016) Abies–Circum-Mediterranean firs in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, De Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publication Office of the European Union, Luxembourg, pp 50–51Google Scholar
  24. Čavlović J, Bončina A, Božić M, Goršić E, Simončič T, Teslak K (2015) Depression and growth recovery of silver fir in uneven-aged Dinaric forests in Croatia from 1901 to 2001. Forestry cpv026Google Scholar
  25. Chauchard S, Beilhe F, Denis N, Carcaillet C (2010) An increase in the upper tree-limit of silver fir (Abies alba Mill.) in the Alps since the mid-20th century: a land-use change phenomenon. For Ecol Manag 259(8):1406–1415CrossRefGoogle Scholar
  26. Cheddadi R, Birks HJB, Tarroso P, Liepelt S, Gömöry D, Dullinger S, Meier ES, Hülber K, Maiorano L, Laborde H (2014) Revisiting tree-migration rates: Abies alba (Mill.), a case study. Veg Hist Archaeobot 23(2):113–122CrossRefGoogle Scholar
  27. Chéret V, Dagnac J, Fromard F (1987) Le déperissement du sapin dans les Pyrénées luchonnaises. Revue forestière française 39(1):12–24CrossRefGoogle Scholar
  28. Colombaroli D, Marchetto A, Tinner W (2007) Long-term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy). J Ecol 95(4):755–770CrossRefGoogle Scholar
  29. Commarmot B (1997) Anbauversuch mit kalabrischen Tannen in verschiedenen Höhenlagen—erste Ergebnisse. Schweiz Z Forstwiss 148:353–365Google Scholar
  30. Conedera M, Barthold F, Torriani D, Pezzatti G (2010) Drought sensitivity of Castanea sativa: case study of summer 2003 in the Southern Alps. Acta Hortic 866:297–302CrossRefGoogle Scholar
  31. Conedera M, Colombaroli D, Tinner W, Krebs P, Whitlock C (2017) Insights about past forest dynamics as a tool for present and future forest management in Switzerland. For Ecol Manag 388:100–112CrossRefGoogle Scholar
  32. Cortini Pedrotti C (1967) L’abetina di Varramista (Pisa). Flora fanerogamica e briologica e caratteristiche geobotaniche. Webbia 22(1):39–65CrossRefGoogle Scholar
  33. Davi H, Cailleret M (2017) Assessing drought-driven mortality trees with physiological process-based models. Agric For Meteorol 232:279–290CrossRefGoogle Scholar
  34. de Andrés EG, Camarero JJ, Martínez I, Coll L (2014) Uncoupled spatiotemporal patterns of seed dispersal and regeneration in Pyrenean silver fir populations. For Ecol Manag 319:18–28CrossRefGoogle Scholar
  35. Desplanque C, Rolland C, Michalet R (1998) Dendroclimatologie comparée du sapin et de l’épicéa dans les zones internes des vallées alpines nord-occidentales (France et Italie). Ecologie 29(1–2):351–355Google Scholar
  36. Dobrowolska D, Bončina A, Klumpp R (2017) Ecology and silviculture of silver fir (Abies alba Mill.): a review. J For Res 22(6):326–335CrossRefGoogle Scholar
  37. Ducić V, Ivanović R, Mihajlović J, Gnjato R, Trbić G, Ćurčić NB (2014) Dendroindication of drought in Rogatica region (Eastern Bosnia). Arch Biol Sci 67(1):201–211CrossRefGoogle Scholar
  38. Durand-Gillmann M, Cailleret M, Boivin T, Nageleisen L-M, Davi H (2014) Individual vulnerability factors of silver fir (Abies alba Mill.) to parasitism by two contrasting biotic agents: mistletoe (Viscum album L. ssp. abietis) and bark beetles (Coleoptera: Curculionidae: Scolytinae) during a decline process. Ann For Sci 71(6):659–673CrossRefGoogle Scholar
  39. Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018) How much does climate change threaten European forest tree species distributions? Glob Change Biol 24(3):1150–1163CrossRefGoogle Scholar
  40. Eichenseer F (1997) Entwicklung der Tannenanteile in Ostbayern im 19. und 20. Jahrhundert. Forst und Holz 52(17):498–501Google Scholar
  41. Ellenberg HH (2009) Vegetation ecology of central Europe. Cambridge University Press, CambridgeGoogle Scholar
  42. Elling W, Dittmar C, Pfaffelmoser K, Rötzer T (2009) Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. For Ecol Manag 257(4):1175–1187CrossRefGoogle Scholar
  43. Elling W, Heber U, Polle A, Beese F (2012) Schädigung von Waldökosystemen: Auswirkungen anthropogener Umweltveränderungen und Schutzmaßnahmen. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  44. Etzold S, Zweifel R (2018) TreeNet – Daten und Analysen der ersten fünf Messjahre. Mit Beiträgen von: Haeni, M.; Burri, S.; Braun, S.; Walthert, L.; Dawes, M.; Buchmann, N.; Haeler, E.; Köchli, R.; Schaub, M.; Eugster, W. WSL Berichte 72. 69 SGoogle Scholar
  45. EUFORGEN (2003) Distribution map of silver fir (Abies alba). First published in 2003, updated on 25 November 2011Google Scholar
  46. Fady B (1993) Caractéristiques écologiques et sylvicoles des sapins de Grèce dans leur aire naturelle et en plantation dans le sud de la France. Perspectives pour le reboisement en région méditerranéenne. Revue forestière française 45(2):119–133CrossRefGoogle Scholar
  47. Ficko A, Poljanec A, Boncina A (2011) Do changes in spatial distribution, structure and abundance of silver fir (Abies alba Mill.) indicate its decline? For Ecol Manag 261(4):844–854CrossRefGoogle Scholar
  48. Ficko A, Roessiger J, Bončina A (2016) Can the use of continuous cover forestry alone maintain silver fir (Abies alba Mill.) in central European mountain forests? Forestry 89(4):412–421CrossRefGoogle Scholar
  49. Frank A, Howe GT, Sperisen C, Brang P, Clair JBS, Schmatz DR, Heiri C (2017a) Risk of genetic maladaptation due to climate change in three major European tree species. Glob Chang Biol 23(12):5358–5371CrossRefPubMedGoogle Scholar
  50. Frank A, Sperisen C, Howe GT, Brang P, Walthert L, St Clair JB, Heiri C (2017b) Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape. Ecology 98(1):211–227CrossRefPubMedGoogle Scholar
  51. Gazol A, Camarero JJ, Gutiérrez E, Popa I, Andreu-Hayles L, Motta R, Nola P, Ribas M, Sangüesa-Barreda G, Urbinati C (2015) Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J Biogeogr 42(6):1150–1162CrossRefGoogle Scholar
  52. George J-P, Schueler S, Karanitsch-Ackerl S, Mayer K, Klumpp RT, Grabner M (2015) Inter- and intra-specific variation in drought sensitivity in Abies spec. and its relation to wood density and growth traits. Agric For Meteorol 214:430–443CrossRefPubMedGoogle Scholar
  53. Gomez, N (2012) Quel avenir pour le sapin et l’épicéa? Synthèse bibliographique sur l’autécologie et la vulnérabilité comparée du sapin et de l’épicéa dans le cadre des changements climatiques. Rendez-vous techniques (hors série no. 6):3–8Google Scholar
  54. Grassi G, Minotta G, Tonon G, Bagnaresi U (2004) Dynamics of Norway spruce and silver fir natural regeneration in a mixed stand under uneven-aged management. Can J For Res 34(1):141–149CrossRefGoogle Scholar
  55. Greguss L, Longauer R, Krajnáková J (1994) Progress in the breeding program of specific hybridization of first (a review). In: Eder W (ed) Ergebnisse des 7. IUFRO-Tannensymposiums der WP S1.01-08 “Ökologie und Waldbau der Tanne”, pp 144–153Google Scholar
  56. Gruber F (1994) Morphology of coniferous trees: possible effects of soil acidification on the morphology of Norway spruce and silver fir. In: Godbold D, Hättermann A (eds) Effects of acid rain on forest processes. Wiley-Liss, Wilmington, pp 265–324Google Scholar
  57. Gubler M, Henne PD, Schworer C, Boltshauser-Kaltenrieder P, Lotter AF, Bronnimann S, Tinner W (2018) Microclimatic gradients provide evidence for a glacial refugium for temperate trees in a sheltered hilly landscape of Northern Italy. J Biogeogr 45(11):2564–2575CrossRefGoogle Scholar
  58. Guicherd P (1994) Water relations of European silver fir (Abies alba Mill.) in 2 natural stands in the French Alps subject to contrasting climatic conditions. Ann Sci For 51(6):599–611CrossRefGoogle Scholar
  59. Henne PD, Elkin CM, Reineking B, Bugmann H, Tinner W (2011) Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. J Biogeogr 38(5):933–949CrossRefGoogle Scholar
  60. Henne PD, Elkin C, Colombaroli D, Samartin S, Bugmann H, Heiri O, Tinner W (2013) Impacts of changing climate and land use on vegetation dynamics in a Mediterranean ecosystem: insights from paleoecology and dynamic modeling. Landsc Ecol 28(5):819–833CrossRefGoogle Scholar
  61. Henne PD, Elkin C, Franke J, Colombaroli D, Calò C, La Mantia T, Pasta S, Conedera M, Dermody O, Tinner W (2015) Reviving extinct Mediterranean forest communities may improve ecosystem potential in a warmer future. Front Ecol Environ 13(7):356–362CrossRefGoogle Scholar
  62. Herzog M, Rotach P (1990) Trockenresistenz und Immissionshärte der Weisstanne (Abies alba Mill.): Frühtestuntersuchungen mit vier Provenienzen. Schweizerische Zeitschrift für Forstwesen 141(12):989–1010Google Scholar
  63. Hoesly RM, Smith SJ, Feng L, Klimont Z, Janssens-Maenhout G, Pitkanen T, Seibert JJ, Vu L, Andres RJ, Bolt RM (2018) Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci Model Dev 11(1):369CrossRefGoogle Scholar
  64. Hussendörfer E (1999) Genetic variation of silver fir (Abies alba Mill.) populations in Switzerland. For Genet 6(2):101–113Google Scholar
  65. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University PressGoogle Scholar
  66. Jakoby O, Wermelinger B, Stadelmann G, Lischke H (2015) Borkenkäfer im Klimawandel Modellierung des künftigen Befallsrisikos durch den Buchdrucker (Ips typographus)Google Scholar
  67. Jones H, Sutherland R (1991) Stomatal control of xylem embolism. Plant Cell Environ 14(6):607–612CrossRefGoogle Scholar
  68. Kaltenrieder P, Belis CA, Hofstetter S, Ammann B, Ravazzi C, Tinner W (2009) Environmental and climatic conditions at a potential Glacial refugial site of tree species near the Southern Alpine glaciers New insights from multiproxy sedimentary studies at Lago della Costa (Euganean Hills, Northeastern Italy). Quat Sci Rev 28(25–26):2647–2662CrossRefGoogle Scholar
  69. Kandler O, Innes JL (1995) Air pollution and forest decline in Central Europe. Environ Pollut 90(2):171–180CrossRefPubMedGoogle Scholar
  70. Keller F, Lischke H, Mathis T, Möhl A, Wick L, Ammann B, Kienast F (2002) Effects of climate, fire, and humans on forest dynamics: forest simulations compared to the palaeological record. Ecol Model 152(2):109–127CrossRefGoogle Scholar
  71. Kerr G, Stokes V, Peace A, Jinks R (2015) Effects of provenance on the survival, growth and stem form of European silver fir (Abies alba Mill.) in Britain. Eur J For Res 134(2):349–363CrossRefGoogle Scholar
  72. Klaehn F, Winieski J (1962) Interspecific hybridization in the genus Abies. Silvae Genet 11(5/6):130–142Google Scholar
  73. Konnert M, Bergmann F (1995) The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst Evol 196(1):19–30CrossRefGoogle Scholar
  74. Kupferschmid AD, Zimmermann S, Bugmann H (2013) Browsing regime and growth response of naturally regenerated Abies alba saplings along light gradients. For Ecol Manag 310:393–404CrossRefGoogle Scholar
  75. Lang G (1994) Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Fischer, JenaGoogle Scholar
  76. Larsen JB (1986) Die geographische Variation der Weißtanne (Abies alba Mill.) Wachstumsentwicklung und Frostresistenz. Forstwiss Centbl 105(1):396–406CrossRefGoogle Scholar
  77. Latreille A, Davi H, Huard F, Pichot C (2017) Variability of the climate-radial growth relationship among Abies alba trees and populations along altitudinal gradients. For Ecol Manag 396:150–159CrossRefGoogle Scholar
  78. Lefèvre F, Boivin T, Bontemps A, Courbet F, Davi H, Durand-Gillmann M, Fady B, Gauzere J, Gidoin C, Karam M-J, Lalagüe H, Oddou-Muratorio S, Pichot C (2014) Considering evolutionary processes in adaptive forestry. Ann For Sci 71(7):723–739CrossRefGoogle Scholar
  79. Linares JC (2011) Biogeography and evolution of Abies (Pinaceae) in the Mediterranean basin: the roles of long-term climatic change and glacial refugia. J Biogeogr 38(4):619–630CrossRefGoogle Scholar
  80. Linares JC, Camarero JJ (2012) Growth patterns and sensitivity to climate predict silver fir decline in the Spanish Pyrenees. Eur J For Res 131(4):1001–1012CrossRefGoogle Scholar
  81. Lombardi F, Cherubini P, Lasserre B, Tognetti R, Marchetti M (2008) Tree rings used to assess time since death of deadwood of different decay classes in beech and silver fir forests in the central Apennines (Molise, Italy). Can J For Res 38:821–833CrossRefGoogle Scholar
  82. Macias M, Andreu L, Bosch O, Camarero JJ, Gutiérrez E (2006) Increasing aridity is enhancing silver fir Abies alba Mill.) water stress in its south-western distribution limit. Clim Change 79(3–4):289–313CrossRefGoogle Scholar
  83. Maiorano L, Cheddadi R, Zimmermann NE, Pellissier L, Petitpierre B, Pottier J, Laborde H, Hurdu BI, Pearman PB, Psomas A, Singarayer JS, Broennimann O, Vittoz P, Dubuis A, Edwards ME, Binney HA, Guisan A (2013) Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Glob Ecol Biogeogr 22(3):302–317CrossRefGoogle Scholar
  84. Maksymov JK (1950) Untersuchungen über den krummzähnigen Weißtannenborkenkäfer Ips curvidens Germ. während seiner Massenvermehrung 1947-49 in der Schweiz. ETH ZurichGoogle Scholar
  85. Mauri A, de Rigo D, Caudullo G (2016). Abies alba in Europe: distribution, habitat, usage and threats. In: European atlas of forest tree species. Publication Office of the European Union, pp 48–49Google Scholar
  86. Mazza G, Gallucci V, Manetti MC, Urbinati C (2014) Climate–growth relationships of silver fir (Abies alba Mill.) in marginal populations of Central Italy. Dendrochronologia 32(3):181–190CrossRefGoogle Scholar
  87. Motta R (1996) Impact of wild ungulates on forest regeneration and tree composition of mountain forests in the western Italian Alps. For Ecol Manag 88:93–98CrossRefGoogle Scholar
  88. Muller SD, Nakagawa T, De Beaulieu J-L, Court-Picon M, Carcaillet C, Miramont C, Roiron P, Boutterin C, Ali AA, Bruneton H (2007) Post-glacial migration of silver fir (Abies alba Mill.) in the south-western Alps. J Biogeogr 34(5):876–899CrossRefGoogle Scholar
  89. Nehrbass-Ahles C, Babst F, Klesse S, Nötzli M, Bouriaud O, Neukom R, Dobbertin M, Frank D (2014) The influence of sampling design on tree-ring-based quantification of forest growth. Glob Change Biol 20(9):2867–2885CrossRefGoogle Scholar
  90. Noetzli KP, Müller B, Sieber TN (2003) Impact of population dynamics of white mistletoe (Viscum album ssp. abietis) on European silver fir (Abies alba). Ann For Sci 60(8):773–779CrossRefGoogle Scholar
  91. Nourtier M, Chanzy A, Cailleret M, Yingge X, Huc R, Davi H (2014) Transpiration of silver Fir (Abies alba Mill.) during and after drought in relation to soil properties in a Mediterranean mountain area. Ann For Sci 71(6):683–695CrossRefGoogle Scholar
  92. Panagos P, Ballabio C, Borrelli P, Meusburger K, Klik A, Rousseva S, Tadić MP, Michaelides S, Hrabalíková M, Olsen P (2015) Rainfall erosivity in Europe. Sci Total Environ 511:801–814CrossRefPubMedGoogle Scholar
  93. Peguero-Pina JJ, Camarero JJ, Abadía A, Martín E, González-Cascón R, Morales F, Gil-Pelegrín E (2007) Physiological performance of silver-fir (Abies alba Mill.) populations under contrasting climates near the south-western distribution limit of the species. Flora Morphol Distrib Funct Ecol Plants 202(3):226–236CrossRefGoogle Scholar
  94. Pfadenhauer JS, Klötzli FA (2015) Vegetation der Erde: Grundlagen, Ökologie, Verbreitung. Springer, BerlinGoogle Scholar
  95. Piotti A, Leonarduzzi C, Postolache D, Bagnoli F, Spanu I, Brousseau L, Urbinati C, Leonardi S, Vendramin GG (2017) Unexpected scenarios from Mediterranean refugial areas: disentangling complex demographic dynamics along the Apennine distribution of silver fir. J Biogeogr 44(7):1547–1558CrossRefGoogle Scholar
  96. Pons A, Quezel P (1985) history of the flora and vegetation and past and present human disturbance in the Mediterranean region. In: Gomez-Campo C (ed) Plant conservation in the Mediterranean area. Geobotany 7. W. Junk, pp 25–43Google Scholar
  97. Ravn HP, Havill N, Akbulut S, Foottit R, Serin M, Erdem M, Mutun S, Kenis M (2013) D reyfusia nordmannianae in N orthern and C entral E urope: potential for biological control and comments on its taxonomy. J Appl Entomol 137(6):401–417CrossRefGoogle Scholar
  98. Robakowski P, Montpied P, Dreyer E (2002) Temperature response of photosynthesis of silver fir (Abies alba Mill.) seedlings. Ann For Sci 59(2):163–170CrossRefGoogle Scholar
  99. Rohner B, Thürig E (2015) Entwicklung klimasensitiver Wachstumsfunktionen für das Szenariomodell «Massimo». Schweizerische Zeitschrift fur Forstwesen 166(6):389–398CrossRefGoogle Scholar
  100. Rohner B, Waldner P, Lischke H, Ferretti M, Thürig E (2018) Predicting individual-tree growth of central European tree species as a function of site, stand, management, nutrient, and climate effects. Eur J For Res 137(1):29–44CrossRefGoogle Scholar
  101. Rolland C, Michalet R, Desplanque C, Petetin A, Aime S (1999) Ecological requirements of Abies alba in the French Alps derived from dendro-ecological analysis. J Veg Sci 10(3):297–306CrossRefGoogle Scholar
  102. Rothe A, Dittmar C, Zang C (2011) Tanne–vom Sorgenkind zum Hoffnungsträger. LWF Wissen 66:59–63Google Scholar
  103. Ruosch M, Spahni R, Joos F, Henne PD, Knaap WO, Tinner W (2016) Past and future evolution of Abies alba forests in Europe—comparison of a dynamic vegetation model with palaeo data and observations. Glob Change Biol 22(2):727–740CrossRefGoogle Scholar
  104. Samartin S, Heiri O, Kaltenrieder P, Kühl N, Tinner W (2016) Reconstruction of full glacial environments and summer temperatures from Lago della Costa, a refugial site in Northern Italy. Quat Sci Rev 143:107–119CrossRefGoogle Scholar
  105. Savill P, Wilson SM, Mason B, Jinks R (2016) Silver firs (Abies spp) of Europe and the Near East: species, silviculture, and utilisation potential. Q J For 110:16–27Google Scholar
  106. Schmid S, Genevest R, Gobet E, Suchan T, Sperisen C, Tinner W, Alvarez N (2017) HyRAD-X, a versatile method combining exome capture and RAD sequencing to extract genomic information from ancient DNA. Methods Ecol Evol 8(10):1374–1388CrossRefGoogle Scholar
  107. Schnyder J, Ehrbar R, Reimoser F, Robin K (2016) Huftierbestände und Verbissintensitäten nach der Luchswiederansiedlung im Kanton St. Gallen. Schweizerische Zeitschrift fur Forstwesen 167(1):13–20CrossRefGoogle Scholar
  108. Schütt P, Cowling EB (1985) Waldsterben, a general decline of forests in central Europe: symptoms, development and possible causes. Plant Dis 69(7):548–558Google Scholar
  109. Semerikova SA, Semerikov VL (2014) Molecular phylogenetic analysis of the genus Abies (Pinaceae) based on the nucleotide sequence of chloroplast DNA. Russ J Genet 50(1):7–19CrossRefGoogle Scholar
  110. Sindelar J, Beran F (2008) Comparison of some exotic species of Abies genus with chosen silver fir provenances on the plots of town Pisek. Commun Inst For Bohem 24:99–114Google Scholar
  111. Stokes A, Ghani MA, Salin F, Danjon F, Jeannin H, Berthier S, Kokutse AD, Frochot H (2007) Root morphology and strain distribution during tree failure on mountain slopes. In: Stokes A, Spanos I, Norris JE, Cammeraat E (eds) Eco-and ground bio-engineering: the use of vegetation to improve slope stability: proceedings of the first international conference on eco-engineering, 13–17 September 2004. Springer Netherlands, pp 165–173Google Scholar
  112. Stott P (2016) How climate change affects extreme weather events. Science 352(6293):1517–1518CrossRefPubMedGoogle Scholar
  113. Terhürne-Berson R, Litt T, Cheddadi R (2004) The spread of Abies throughout Europe since the last glacial period: combined macrofossil and pollen data. Veg Hist Archaeobot 13(4):257–268CrossRefGoogle Scholar
  114. Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat Sci Rev 25(5):526–549CrossRefGoogle Scholar
  115. Tinner W, Hubschmid PH, Wehrli M, Amman B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87(2):273–289CrossRefGoogle Scholar
  116. Tinner W, Conedera M, Gobet E, Hubschmid P, Wehrli M, Ammann B (2000) A palaeoecological attempt to classify fire sensitivity of trees in the southern Alps. The Holocene 10(5):565–574CrossRefGoogle Scholar
  117. Tinner W, Colombaroli D, Heiri O, Henne PD, Steinacher M, Untenecker J, Vescovi E, Allen JR, Carraro G, Conedera M (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83(4):419–439CrossRefGoogle Scholar
  118. Tinner W, Conedera M, Bugmann H, Colombaroli D, Gobet E, Vescovi E, Heiri O, Joos F, Luterbacher J, La Mantia T (2016) Europäische Wälder unter wärmeren Klimabedingungen: neue Erkenntnisse aus Paläoökologie und dynamischer Vegetationsmodellierung. AFZ-Der Wald 71(18):45–49Google Scholar
  119. Uhl E, Ammer C, Spellmann H, Schölch M, Pretzsch H (2013) Zuwachstrend und Stressresilienz von Tanne und Fichte im Vergleich. Allg Forstund Jagdzeitung 184(11–12):278–292Google Scholar
  120. Valsecchi V, Carraro G, Conedera M, Tinner W (2010) Late-Holocene vegetation and land-use dynamics in the Southern Alps (Switzerland) as a basis for nature protection and forest management. The Holocene 20(4):483–495CrossRefGoogle Scholar
  121. Van Breemen N, Burrough P, Velthorst Ev, Van Dobben H, de Wit T, Ridder Td, Reijnders H (1982) Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature 299(5883):548–550CrossRefGoogle Scholar
  122. van der Maaten-Theunissen M, Kahle H-P, van der Maaten E (2012) Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann For Sci 70(2):185–193CrossRefGoogle Scholar
  123. Vitali V, Buntgen U, Bauhus J (2017) Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob Change Biol 23(12):5108–5119CrossRefGoogle Scholar
  124. Vitali V, Büntgen U, Bauhus J (2018) Seasonality matters—the effects of past and projected seasonal climate change on the growth of native and exotic conifer species in Central Europe. Dendrochronologia 48:1–9CrossRefGoogle Scholar
  125. Vitasse Y, Delzon S, Bresson CC, Michalet R, Kremer A (2009) Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Can J For Res 39(7):1259–1269CrossRefGoogle Scholar
  126. Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Körner C (2012) Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps. J Biogeogr 39(8):1439–1449CrossRefGoogle Scholar
  127. Vitasse Y, Rebetez M, Augustin S, Brang P (2018a) Quel avenir pour le sapin blanc en Suisse sous les effets des changements climatiques? Schweizerische Zeitschrift fur Forstwesen 169(3):131–142CrossRefGoogle Scholar
  128. Vitasse Y, Schneider L, Rixen C, Christen D, Rebetez M (2018b) Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agric For Meteorol 248:60–69CrossRefGoogle Scholar
  129. Vrska T, Adam D, Hort L, Kolar T, Janik D (2009) European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians: a developmental cycle or a linear trend induced by man? For Ecol Manag 258:347–356CrossRefGoogle Scholar
  130. Watts WA (1985) A long pollen record from Laghi di Monticchio, southern Italy: a preiminary account. J Geol Soc 142(3):491–499CrossRefGoogle Scholar
  131. Wick L, Möhl A (2006) The mid-Holocene extinction of silver fir (Abies alba) in the Southern Alps: a consequence of forest fires? Palaeobotanical records and forest simulations. Veg Hist Archaeobot 15(4):435CrossRefGoogle Scholar
  132. Xiang X, Cao M, Zhou Z (2007) Fossil history and modern distribution of the genus Abies (Pinaceae). Front For China 2(4):355–365CrossRefGoogle Scholar
  133. Xiang Q-P, Wei R, Shao Y-Z, Yang Z-Y, Wang X-Q, Zhang X-C (2015) Phylogenetic relationships, possible ancient hybridization, and biogeographic history of Abies (Pinaceae) based on data from nuclear, plastid, and mitochondrial genomes. Mol Phylogenet Evol 82(Part A):1–14CrossRefPubMedGoogle Scholar
  134. Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A (2014) Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Glob Change Biol 20(12):3767–3779CrossRefGoogle Scholar
  135. Zimmermann NE, Normand S, Psomas A (2014) PorTree Final Report: A project funded by the BAFU-WSL program on “Forests and Climate Change” in Switzerland. ETH Zurich.
  136. Zimmermann NE, Schmatz D, Gallien L, Körner C, Huber B, Frehner M, Küchler M, Psomas A (2016) Répartition des espèces forestières et adéquation des stations. In: Pluess AR, Augustin S, Brang P (eds) Forêts et changements climatiques—Éléments pour des stratégies d’adaptation. Office fédéral de l’environnement OFEV, Berne; Institut fédéral de recherche WSL, Birmensdorf. Haupt, pp 205–228Google Scholar
  137. Zingg A, Bürgi A (2008) Trockenperioden seit 1900 und Waldwachstum: eine Analyse langfristiger Datenreihen| Drought periods since 1900 and growth of forest stands: an analysis of long-term data series. Schweizerische Zeitschrift für Forstwesen 159(10):352–361CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Forest DynamicsWSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
  2. 2.SwissForestLabBirmensdorfSwitzerland
  3. 3.Institute of GeographyUniversity of NeuchatelNeuchâtelSwitzerland
  4. 4.Forest DynamicsWSL Swiss Federal Institute for Forest, Snow and Landscape ResearchNeuchâtelSwitzerland
  5. 5.Community EcologyWSL Swiss Federal Institute for Forest, Snow and Landscape ResearchCadenazzoSwitzerland
  6. 6.Forest DivisionFederal Office for the Environment FOENBernSwitzerland
  7. 7.Forest Resources and ManagementWSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
  8. 8.Institute of Plant SciencesUniversity of BernBernSwitzerland
  9. 9.Oeschger Center for Climate Change ResearchUniversity of BernBernSwitzerland

Personalised recommendations