Advertisement

European Journal of Forest Research

, Volume 138, Issue 4, pp 583–594 | Cite as

Wood density as an auxiliary classification criterion for botanical identification of 241 tree species in the order Sapindales

  • Guillermo Riesco MuñozEmail author
  • José Imaña Encinas
  • José Elias de Paula
Original Paper
  • 108 Downloads

Abstract

In plant taxonomy, wood density is not usually used as a classification criterion, although it could be used as a complementary measure. The aim of the present study was therefore to verify whether the xylem tissues of species belonging to the same taxon (genus or family) are similar in terms of density. In order to test this hypothesis, we examined previously reported wood basic density values for 241 tree species growing in Latin American forests and belonging to 64 genera in the families Anacardiaceae, Burseraceae, Meliaceae, Rutaceae, Sapindaceae and Simaroubaceae (order Sapindales). An estimated 57% of the species analyzed had light or very light wood (basic density < 0.65 g/cm3), although the density of the whole sample varied widely between species, from 0.24 g/cm3 for Bursera instabilis to 1.23 g/cm3 for Schinopsis brasiliensis. The lightest woods generally corresponded to species in the family Simaroubaceae and the heaviest ones to species in the family Rutaceae. The interspecific variability in basic density decreased significantly as the number of species examined in the taxon increased. Thus, species in Simaroubaceae family, the least represented in the whole sample, yielded the greatest variation in basic density between species. The findings verified that, as a single criterion, basic density is insufficient to distinguish all families and genera considered in the study, as the density did not differ significantly between Burseraceae and Meliaceae or between Sapindaceae and Rutaceae. In addition, within each family the basic density only differed significantly between four of the genera: Protium (Burseraceae), Trattinickia (Burseraceae), Zanthoxylum (Rutaceae) and Cupania (Sapindaceae).

Keywords

Basic density Taxonomy Tropical forest Wood technology 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

All data generated during this study are included in this published article.

References

  1. ABNT (2003) NBR 11941: madeira, determinaçao da densidade básica. Associaçao Brasileira de Normas Técnicas, Rio de JaneiroGoogle Scholar
  2. Álvarez E, Benítez D, Velásquez C, Cogollo A (2013) Densidad básica del fuste del bosque seco en la costa caribe de Colombia. Revista Intertropica 8:17–28Google Scholar
  3. Arévalo Fuentes RL, Londoño Arango A (2005) Manual para la identificación de maderas que se comercializan en el Departamento del Tolima. Universidad del Tolima, IbaguéGoogle Scholar
  4. Asseflor Consultoria Agroflorestal (2018) Tabela de pesos de algumas madeiras da Amazonia. http://asseflorestal.blogspot.com.br/2012/01/tabela-de-pesos-de-alugumas-madeiras-da.html. Accessed 25 May 2018
  5. Atencia ME (2003) Densidad de maderas (kg/m3) ordenadas por nombre común. INTI/CITEMA, Buenos AiresGoogle Scholar
  6. Baeta I da C, Santos V (1999) Resistência dos materiais e dimensionamento de estruturas para construções rurais. Universidade Federal de Viçosa, Department Engenharia Agrícola, ViçosaGoogle Scholar
  7. Brown S (1997) Estimating biomass and biomass change of tropical forest: a primer. FAO Forestry Paper 134. FAO, RomeGoogle Scholar
  8. Carpio MIM (2003) Maderas de Costa Rica: 150 especies forestales, 2nd edn. Editorial Universidad de Costa Rica, San José de Costa RicaGoogle Scholar
  9. Carvalho G (2004) Tabela de peso específico de algumas madeiras da Amazonia. AIMEX, BelémGoogle Scholar
  10. Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege HT, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16(6):2356–2367CrossRefGoogle Scholar
  11. Chave J, Coomes DA, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum (Global Wood Density Database). Ecol Lett 12(4):351–366CrossRefGoogle Scholar
  12. Chipaia F, Urbinati C, Dos Santos P, Reis A (2017) Identification of diagnostic anatomical features in ten species of Sapindales occurring in the Brazilian Amazon. In: 28th international conference on wood science and technology 2017. Implementation of wood science in wood working sector. European Forest Institute, ZagrebGoogle Scholar
  13. Cronquist A (1988) The evolution and classification of flowering plants. New York Botanical Garden, BronxGoogle Scholar
  14. Desch HE, Dinwoodie JM (1996) Timber: structure, properties, conversion and use. MacMillan Press Ltd, Hong-KongCrossRefGoogle Scholar
  15. FAO (2008) Evaluación de los recursos forestales nacionales 2010. Directrices para la elaboración de informes nacionales destinados a FRA 2010. Organización de las Naciones Unidas para la Alimentación y la Agricultura, Departamento de Bosques, RomeGoogle Scholar
  16. Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. For Ecol Manage 90(1):59–87CrossRefGoogle Scholar
  17. Forest Products Laboratory (2010) Wood handbook. Wood as an engineering material. USDA For. Serv. Gen. Tech. Rep. FPL-GTR-113, MadisonGoogle Scholar
  18. Gama RL (2018) Floral structure of Guarea macrophylla Vahl and Trichilia claussenii C.DC. (Meliaceae): funcional aspects and implications in the systematics and evolution of Sapindales. Master´s Dissertation. Instituto de Biociências, University of São Paulo, São PauloGoogle Scholar
  19. Ibanez T, Chave J, Barrabé L, Elodie B, Boutreux T, Trueba S, Vandrot H, Birnbaum P (2017) Community variation in wood density along a bioclimatic gradient on a hyper-diverse tropical island. J Veg Sci 28:19–33CrossRefGoogle Scholar
  20. JUNAC (1981) Tablas de propiedades físicas y mecánicas de la madera de 24 especies de Colombia. Junta del Acuerdo de Cartagena, LimaGoogle Scholar
  21. Kraft NJB, Metz MR, Condit RS, Chave J (2010) The relationship between wood density and mortality in a global tropical forest data set. New Phytol.  https://doi.org/10.1111/j.1469-8137.2010.03444.x CrossRefPubMedGoogle Scholar
  22. Li S, Lens F, Espino S, Karimi Z, Klepsch M, Jochen Schenk H, Schmitt M, Schuldt B, Jansen S (2016) Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J 37:152–171CrossRefGoogle Scholar
  23. Luz CL da S (2017) Phylogeny and systematics of Schinus L. (Anacardiaceae), with revision of a clade endemic to the Andean cloud forests. Doctoral Thesis. Instituto de Biociências, University of São Paulo, São PauloGoogle Scholar
  24. MAE-FAO (2014) Propiedades anatómicas, físicas y mecánicas de 93 especies forestales. Ministerio del Ambiente del Ecuador, Organización de las Naciones Unidas para la Alimentación y la Agricultura, QuitoGoogle Scholar
  25. Martínez-Cabrera HI, Jones CS, Espino S, Jochen Schenk J (2009) Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. Am J Bot 96:1388–1398CrossRefGoogle Scholar
  26. Mettem CJ, Richens AD (1991) Hardwoods in construction. Timber Research & Development Association, High WycombeGoogle Scholar
  27. Missouri Botanical Garden (2018) Tropicos.org. http://www.tropicos.org. Accessed 7 Sept 2018
  28. Mitchell JD, Douglas DC (2015) A revision of Spondias L. (Anacardiaceae) in the Neotropics. Phytokeys 55:1–92CrossRefGoogle Scholar
  29. Ogle K, Pathikonda S, Sartor K, Lichstein JW, Osnas JLD, Pacala SW (2014) A model-based meta-analysis for estimating species-specific wood density and identifying potential sources of variation. J Ecol 102:194–208.  https://doi.org/10.1111/1365-2745.12178 CrossRefGoogle Scholar
  30. OIMT (2018) Lesser used species. Organización Internacional de Maderas Tropicales. http://www.tropicaltimber.info/es/. Accessed 16 July 2018
  31. Peraza Oramas C, González Álvarez MA (1973) Tecnología de la madera. Volumen I. La producción maderera y su importancia económica. AITIM, MadridGoogle Scholar
  32. Quintana S, Cabudivo A, Espíritu JM, Cabudivo JM (2011) Propiedades físico-mecánicas de las maderas de Simarouba amara (Aubl) y Cedrelinga catenaeformis (Ducke) de plantaciones de diferentes edades, San Juan Bautista, Loreto, Perú. Conoc Amaz 2(2):115–123Google Scholar
  33. Quirino WF, Vale AT, Andrade APA, Abreu VLS, Azevedo MCS (2004) Poder calorífico da madeira e de resíduos lignocelulósicos. Biomassa e Energia 1(2):173–182Google Scholar
  34. Riesco Muñoz G, Imaña Encinas J, Paula JE (2019) Densidad de la madera de 59 especies del orden Sapindales procedentes de bosques naturales brasileños. Madera y Bosques 25(2) (in press)Google Scholar
  35. Rodríguez Rojas M (1996) Manual de identificación de especies forestales de la subregión andina. Instituto Nacional de Investigación Agraria-Perú, Organización Internacional de las Maderas Tropicales, LimaGoogle Scholar
  36. Sambamurty AVSS (2010) Taxonomy of angiosperms. I.K. International Pvt. Ltd., New DelhiGoogle Scholar
  37. Savi T, Love VL, Dal Borgo A, Martellos S, Nardini A (2017) Morpho-anatomical and physiological traits in saplings of drought-tolerant Mediterranean woody species. Trees 31:1137–1148CrossRefGoogle Scholar
  38. SFB (2014) Madeiras tropicales brasileiras, v.2. Serviço Florestal Brasileiro, LPF, BrasiliaGoogle Scholar
  39. Spicer R (2016) Variation in angiosperm wood structure and its physiological and evolutionary significance. In: Groover A, Cronk Q (eds) Comparative and evolutionary genomics of angiosperm trees. Plant genetics and genomics: crops and models, vol 21. Springer, ChamGoogle Scholar
  40. Swenson NG, Enquist BJ (2007) Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot 94(3):451–459CrossRefGoogle Scholar
  41. WWF (2008) Maderas de Colombia. Global forest and trade network. World Wildlife Fund, BogotáGoogle Scholar
  42. WWF (2012) Maderas de Panamá. Global forest and trade network. World Wildlife Fund, Ciudad de PanamáGoogle Scholar
  43. Zobel BJ, Buijtenen JPV (1989) Wood variation. Its causes and control. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sustainable Forest Management Unit, Agroforestry Engineering DepartmentUniversity of Santiago de CompostelaLugoSpain
  2. 2.BrasiliaBrazil

Personalised recommendations