Abstract
Genetic variation provides the foundation for species to survive, reproduce and evolve. Wolf trees are an example that may have a difference genetic background; however, research on the genetics of Scots pine (Pinus sylvestris L.) wolf trees is limited. The objectives were to assess (1) the morphological and genetic differentiation of wolf tree morphotypes in artificially established young commercial Scots pine stands using chloroplast microsatellite (cpSSR) DNA markers; and (2) the genetic differentiation based on progeny testing of mature wolf tree and regular tree morphotypes found in natural Scots pine stands. Our material consisted of (a) a 20-year-old artificially established stand in central Lithuania, where we morphotyped all trees and genotyped 59 wolf trees and 50 control trees at 6 cpSSR loci, (b) a nursery test where we assessed the morphology of 2-year-old open pollinated progeny of 8 wolf trees (20 seedlings per tree) in comparison with a control selected in a mature stand in northwestern Lithuania. Results showed a significant genetic differentiation between wolf trees and regular trees in young plantations based on the cpSSR DNA markers. Wolf trees had a higher genetic diversity at the cpSSR loci compared to the regular trees in the young plantations. The progeny test showed wolf trees contained more lateral shoots and possessed larger crown at age 2 in the nursery test. Our study suggests that there is a genetic background for the morphological differentiation between wolf trees and regular commercial Scots pine trees. However, the morphotype structure of wolf trees is complex, thus requiring future replicated studies spread across different regions and age classes.












Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Beck W (2004) Wirkung der Witterung auf Wachstum und Vitalität von Waldbäumen und Waldbeständen [Effect of weather on growth and vitality of forest trees and forest stands]. In: Anders et al (eds). Auswirkungen der Trockenheitim Jahr 2003 auf Waldzustand und Waldbau. Arbeitsbericht der BFH Nr 2/2004: 36–56 (in German)
Buchovska J, Danusevičius D, Baniulis D, Stanys V, Šikšnianienė JB, Kavaliauskas D (2013) The location of the northern glacial refugium of Scots pine based on mitochondrial DNA markers. Baltic For 19(1):2–12
Cheddadi R, Vendramin GG, Litt T, François L, Kageyama M, Lorentz S, Laurent J-M, De Beaulieu J-L, Sadori L, Jost A, Lunt D (2006) Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Glob Ecol Biogeogr 15:271–282
Danusevicius D (2008) Hybrid vigour from intra-specific crosses of Scots pine. Baltic For 14(1):2–6
Danusevičius D, Kavaliauskas D, Fussi B (2016) Optimum sample size for SSR-based estimation of representative allele frequencies and genetic diversity in Scots pine populations. Baltic For 22(2):194–202
Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculated oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256
Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361
Eiche V, Andersson E (1974) Survival and growth in Scots pine (Pinus sylvestris L.). Theor Appl Genet 44:49–57
Ekberg I, Eriksson G, Dormling I (1979) Photoperiodic reactions in conifer species. Holarct Ecol 2:255–263
Eliades NG, Eliades DG (2009) Haplotype analysis: software for analysis of haplotypes data. Distributed by the authors. Forest Genetics and Forest Tree Breeding, Georg-Augst University Goettingen, Germany, Göttingen
Ennos RA, Sinclair WT, Hu XS, Langdon A (1999) Using organelle markers to elucidate the history, ecology and evolution of plant populations. Syst Assoc Spec 57:1–19
Epperson BK (2004) Multilocus estimation of genetic structure within populations. Theor Popul Biol 65(3):227–237
Eriksson G (2008) Pinus sylvestris recent genetic research. Department of Plant Biology and Forest Genetics, Genetic Center, Swedish University of Agricultural Sciences. Uppsala, Sweden, 111 p. ISBN 978-91-85911-90-5
Eriksson G, Ilstedt B, Nilsson C, Ryttman H (1987) Within- and between-population variation of growth and stem quality in a 30-year-old Pinus sylvestris trial. Scand J For Res 2(1–4):301–314
Erteld W (1960) Untersuchung über Leistung und Entwicklung der Kiefer bei verschiedener Behandlung [Study on performance and development of pine under different treatment]. Arch Forstw 9:326–364 (in German)
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620
Faulkner R (1969) Some characters of secondary importance to stem straightness in the breeding of conifers. Second world consultation on forest tree breeding, Washington, DC, USA, 7–16 August 1969. 1970, vol 1, pp 269–283
Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle
Ferris R, Humphrey JW (1999) A review of potential biodiversity indicators for application in British forests. Forestry 72(4):313–328
Gedminas A, Ozolinčius R (2006) Medžiai-Vilkai, Medžiai-Avys Ir Sverto Taisyklė [Wolf-trees, sheep-trees and the rule of lever]. Naturales Scientiae Omnibus. http://gamta.vdu.lt/bakalaurai/pop_straipsniai/medziai_vilkai_avys/medziai_vilkai_avys.html. Accessed 15 Oct 2018 (in Lithuanian)
Giertych M (1991) Provenance variation in growth and phenology. In: Giertych M, Mátyás C (eds) Genetics of Scots pine. Akademiai Kiado, Budapest, pp 87–101
Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139(1):463–471
Haapanen M, Veiling P, Annala M-L (1997) Progeny trial estimates of genetic parameters for growth and quality traits in Scots pine. Silva Fennica 31(1):3–12
Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based population genetic studies: 25–30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7(9):e45170
Hannerz M (1998) Genetic and seasonal variation in hardiness and growth rhythm in boreal and temperate conifers—a review and annotated bibliography. The Forestry Research Institute of Sweden, Report 2, p 140
Hertel H, Kohlstock N (1994) Different genetic structures of two morphological types of Scots pine (Pinus sylvestris L.). Silvea Genetica 43(5):268–272
Karazija S (1988) Lietuvos miska tipai. [Forest types of Lithuania]. Mokslas, Vilnius (in Lithuanian)
Kavaliauskas D (2015) Genetic structure and genetic diversity of Scots pine (Pinus sylvestris L.) populations in Lithuania. Ph.D. thesis, Aleksandras Stulginskis University, p 139 (in English)
Kerpauskaite V (2017) Effect of forest management on genetic diversity and spatial genetic structure of Scots pine. Ph.D. thesis, Aleksandras Stulginskis university, Akademija 2017, p 95
Kerr G, Haufe J (2011) Thinning practice. A silvicultural guide. Forestry commission. http://www.forestry.gov.uk/pdf/Silviculture_Thinning_Guide_v1_Jan2011.pdf/$FILE/Silviculture_Thinning_Guide_v1_Jan2011.pdf. Accessed 05 June 2018
Kohlstock N (1982) Neue Erkenntnisse in der Kiefern-Jungwuchpflege [New insights into the management of young pine stands]. Beiträge fur die Forstwirtschaft 4:155–159 (in German)
Kräuter G (1965) Die Behandlung von Kiefernjungbeständen auf der Grundlage von biologischen und dynamischen Merkmalen der Einzelstämme. Conference report. AdL Berlin 75:337–342 (in German)
Lindgren D, Paule L, Xihuan S, Yadzani R, Segerström U, Tallin J-E, Lejdebro ML (1995) Can viable pollen carry Scots pine genes over long distances? Grana 34:64–69
Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129
Liziniewicz M (2014) Influence of spacing and thinning on wood properties in conifer plantations. Doctoral dissertation. Acta Universitatis agriculturae Sueciae. p 96
Lockow K-W (1992) Kieferntypen und Bestandesbehandlung. Zum Wachstumsablauf und zur Wuchsdynamik der Kiefer miteinigen Schlussfolgerungenfür die Bestandesbehandlung [Pine types and stand treatment. On the growth process and the growth dynamics of pine with some conclusions for the stand treatment]. Der Wald 42(5):170–173 (in German)
Lönnroth E (1925) Untersuchungen über die innere Struktur und Entwicklung gleichaltriger naturnormaler Kiefernbestände, basiert auf Material aus der Südhälfte Finnlands [Research into the internal structure and evolution of the same age normal natural pine stands, based on the materials from the southern half of Finland]. Acta Forestalia Fennica Nr 30:1–269 (in German)
Makarov V, Iozus A, Morozova E (2014) Estimation of the heritability of selected breeding material by speed of growth of the seed progeny in the conditions of dry steppe in lower Volga region. Mod Prob Sci Educ No 4. http://science-education.ru/ru/article/view?id=14317. Accessed 14 Mar 2019 (in Russian)
Makrickiene E (2017) Environmental and genetic attributes of wolf trees’ morphological types in scots pine (Pinus sylvestris L.). ASU, Kaunas, p 130
Makrickiene E, Drössler L, Brazaitis G (2016) Development and traits of wolf trees in Scots pine (Pinus sylvestris L.): a literature review. Baltic For 22(1):181–188
Mason WL, Alia R (2000) Current and future status of Scots pine (Pinus sylvestris L.) forests in Europe. Investigacion Agraria: Sistemos y Recursos Forestales Fuera de Serie 1–2000:317–333
Namkoong G, Boyle TJB, Gregorius H-R, Joly H, Savolainen O, Ratnam W, Young A (1996) Testing criteria and indicators for assessing the sustainability of forest management: genetic criteria and indicators. CIFOR working paper No. 10. CIFOR, Bogor, Indonesia, 15 pp
Naydenov K, Senneville S, Beaulieu J, Tremblay F, Bousquet J (2007) Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evol Biol 7(1):233
Neale DB, Sederoff RR (1989) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor Appl Genet 77(2):212–216
Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170
Nilsson J-E (1991) The value of early testing. In: Giertych M, Mįtyįs CS (eds) Genetics of Scots pine. Elsevier, Amsterdam, pp 255–263
Nilsson U, Albrektsson A (1993) Productivity of needles and allocation of growth in young Scots pine trees of different competitive status. For Ecol Manag 62(1–4):173–187
Nilsson U, Agestam E, Eko P-M, Elfving B, Fahlvik N, Johansson U, Karlsson K, Lundmark T, Wallentin C (2010) Thinning of Scots pine and Norway spruce monocultures in Sweden—effects of different thinning programmes on stand level gross- and net stem volume production. Technical report. Studia Forestalia Suecica No 219, 47 pp
Page RD (2001) TreeView. Glasgow University, Glasgow
Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
Persson A, Persson B (1992) Survival, growth and quality of Norway spruce (Picea abies (L.) Karst.) provenances at the three Swcdish sites of the IUFRO 1964/68 provenance experiment. Sweden University of Agricultural Sciences Department Forest Yield Research Report 29
Pofahl U, Lockow K-W, Läuter H (1979) Zur Lösung von Klassifizierungsproblemen mit Hilfe der mehrdimensionalen Varianzanalyse [Solution of classification problems using the multidimensional analysis of variance]. Beiträge für die Forstwirtschaft 13(2):41–48 (in German)
Powell W, Morgante M, Andre C, McNicol JW, Machray GC, Doyle JJ, Tingey SV, Rafalski JA (1995) Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr Biol 5(9):1023–1029
Prescher F (1985) Framtida förädlingsstrategi for tall [Future breeding strategy for Scots pine]. Slutredogörelse till Skogs-och Jordbrukets Forskningsrâd. Swedish University of Agricultural Sciences, Department of Forestry Yielding Research, Department Note (in Swedish)
Preuhsler T (1979) Ertragskundliche Merkmale oberbayerischer Bergmischwald-Verjüngungsbestände auf kalkalpinen Standorten im Forstamt Kreuth. Forstl Forschungsber München 45:312–345 (in German)
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
Provan J, Soranzo N, Wilson NJ, McNicol JW, Forrest GI, Cottrell J, Powell W (1998) Gene-pool variation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple-sequence repeats. Proc R Soc Lond 265:1697–1705
Schötte G (1917) Om snöskadorna i södra och mellersta Sveriges skogar åren 1915–1916. Meddelanden från statens skogs-försöksanstalt 13–14(1):111–175 (In Swedish)
Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9(5):615–629
Sinclair WT, Morman JD, Ennos RA (1999) The postglacial history of Scots pine (Pinus sylvestris L.) in Western Europe: evidence from mitochondrial DNA variation. Mol Ecol 8:83–88
Uusvaara O (1991) Havaintoja nuorten istutusmänniköiden oksikkuudesta ja puuaineen laadusta. [Observations about the branchiness and the wood quality of young plantation-grown Scots pine.] Metsäntutkimuslaitoksen tiedonantoja 377, 56 p (In Finnish with English summary)
Vanninen P, Mäkelä A (2005) Carbon budget for Scots pine trees: effects of size, competition and site fertility on growth allocation and production. Tree Physiol 25:17–30
Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:595–598
Wiedemann E (1943) Kiefern-Ertragstafel für mäßige Durchforstung, starke Durchforstung und Lichtung [A yield table for moderate thinning, heavy thinning and light-enchancing thinning in pine]. In: Schober R (ed) Ertragstafeln wichtiger Holzarten bei verschiedener Durchforstung, 4th edn. Sauerländer, Frankfurt am Main, pp 98–115 (in German)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Christian Ammer.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Makrickiene, E., Danusevičius, D., Brazaitis, G. et al. Morphological and genetic differentiation of wolf trees in Scots pine stands based on chloroplast microsatellite markers. Eur J Forest Res 138, 527–537 (2019). https://doi.org/10.1007/s10342-019-01185-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10342-019-01185-3


