Skip to main content
Log in

Morphological and genetic differentiation of wolf trees in Scots pine stands based on chloroplast microsatellite markers

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Genetic variation provides the foundation for species to survive, reproduce and evolve. Wolf trees are an example that may have a difference genetic background; however, research on the genetics of Scots pine (Pinus sylvestris L.) wolf trees is limited. The objectives were to assess (1) the morphological and genetic differentiation of wolf tree morphotypes in artificially established young commercial Scots pine stands using chloroplast microsatellite (cpSSR) DNA markers; and (2) the genetic differentiation based on progeny testing of mature wolf tree and regular tree morphotypes found in natural Scots pine stands. Our material consisted of (a) a 20-year-old artificially established stand in central Lithuania, where we morphotyped all trees and genotyped 59 wolf trees and 50 control trees at 6 cpSSR loci, (b) a nursery test where we assessed the morphology of 2-year-old open pollinated progeny of 8 wolf trees (20 seedlings per tree) in comparison with a control selected in a mature stand in northwestern Lithuania. Results showed a significant genetic differentiation between wolf trees and regular trees in young plantations based on the cpSSR DNA markers. Wolf trees had a higher genetic diversity at the cpSSR loci compared to the regular trees in the young plantations. The progeny test showed wolf trees contained more lateral shoots and possessed larger crown at age 2 in the nursery test. Our study suggests that there is a genetic background for the morphological differentiation between wolf trees and regular commercial Scots pine trees. However, the morphotype structure of wolf trees is complex, thus requiring future replicated studies spread across different regions and age classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Beck W (2004) Wirkung der Witterung auf Wachstum und Vitalität von Waldbäumen und Waldbeständen [Effect of weather on growth and vitality of forest trees and forest stands]. In: Anders et al (eds). Auswirkungen der Trockenheitim Jahr 2003 auf Waldzustand und Waldbau. Arbeitsbericht der BFH Nr 2/2004: 36–56 (in German)

  • Buchovska J, Danusevičius D, Baniulis D, Stanys V, Šikšnianienė JB, Kavaliauskas D (2013) The location of the northern glacial refugium of Scots pine based on mitochondrial DNA markers. Baltic For 19(1):2–12

    Google Scholar 

  • Cheddadi R, Vendramin GG, Litt T, François L, Kageyama M, Lorentz S, Laurent J-M, De Beaulieu J-L, Sadori L, Jost A, Lunt D (2006) Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Glob Ecol Biogeogr 15:271–282

    Article  Google Scholar 

  • Danusevicius D (2008) Hybrid vigour from intra-specific crosses of Scots pine. Baltic For 14(1):2–6

    Google Scholar 

  • Danusevičius D, Kavaliauskas D, Fussi B (2016) Optimum sample size for SSR-based estimation of representative allele frequencies and genetic diversity in Scots pine populations. Baltic For 22(2):194–202

    Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculated oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eiche V, Andersson E (1974) Survival and growth in Scots pine (Pinus sylvestris L.). Theor Appl Genet 44:49–57

    Article  CAS  PubMed  Google Scholar 

  • Ekberg I, Eriksson G, Dormling I (1979) Photoperiodic reactions in conifer species. Holarct Ecol 2:255–263

    Google Scholar 

  • Eliades NG, Eliades DG (2009) Haplotype analysis: software for analysis of haplotypes data. Distributed by the authors. Forest Genetics and Forest Tree Breeding, Georg-Augst University Goettingen, Germany, Göttingen

    Google Scholar 

  • Ennos RA, Sinclair WT, Hu XS, Langdon A (1999) Using organelle markers to elucidate the history, ecology and evolution of plant populations. Syst Assoc Spec 57:1–19

    Google Scholar 

  • Epperson BK (2004) Multilocus estimation of genetic structure within populations. Theor Popul Biol 65(3):227–237

    Article  PubMed  Google Scholar 

  • Eriksson G (2008) Pinus sylvestris recent genetic research. Department of Plant Biology and Forest Genetics, Genetic Center, Swedish University of Agricultural Sciences. Uppsala, Sweden, 111 p. ISBN 978-91-85911-90-5

  • Eriksson G, Ilstedt B, Nilsson C, Ryttman H (1987) Within- and between-population variation of growth and stem quality in a 30-year-old Pinus sylvestris trial. Scand J For Res 2(1–4):301–314

    Article  Google Scholar 

  • Erteld W (1960) Untersuchung über Leistung und Entwicklung der Kiefer bei verschiedener Behandlung [Study on performance and development of pine under different treatment]. Arch Forstw 9:326–364 (in German)

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Faulkner R (1969) Some characters of secondary importance to stem straightness in the breeding of conifers. Second world consultation on forest tree breeding, Washington, DC, USA, 7–16 August 1969. 1970, vol 1, pp 269–283

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Ferris R, Humphrey JW (1999) A review of potential biodiversity indicators for application in British forests. Forestry 72(4):313–328

    Article  Google Scholar 

  • Gedminas A, Ozolinčius R (2006) Medžiai-Vilkai, Medžiai-Avys Ir Sverto Taisyklė [Wolf-trees, sheep-trees and the rule of lever]. Naturales Scientiae Omnibus. http://gamta.vdu.lt/bakalaurai/pop_straipsniai/medziai_vilkai_avys/medziai_vilkai_avys.html. Accessed 15 Oct 2018 (in Lithuanian)

  • Giertych M (1991) Provenance variation in growth and phenology. In: Giertych M, Mátyás C (eds) Genetics of Scots pine. Akademiai Kiado, Budapest, pp 87–101

    Google Scholar 

  • Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139(1):463–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haapanen M, Veiling P, Annala M-L (1997) Progeny trial estimates of genetic parameters for growth and quality traits in Scots pine. Silva Fennica 31(1):3–12

    Article  Google Scholar 

  • Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based population genetic studies: 25–30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7(9):e45170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannerz M (1998) Genetic and seasonal variation in hardiness and growth rhythm in boreal and temperate conifers—a review and annotated bibliography. The Forestry Research Institute of Sweden, Report 2, p 140

  • Hertel H, Kohlstock N (1994) Different genetic structures of two morphological types of Scots pine (Pinus sylvestris L.). Silvea Genetica 43(5):268–272

    Google Scholar 

  • Karazija S (1988) Lietuvos miska tipai. [Forest types of Lithuania]. Mokslas, Vilnius (in Lithuanian)

    Google Scholar 

  • Kavaliauskas D (2015) Genetic structure and genetic diversity of Scots pine (Pinus sylvestris L.) populations in Lithuania. Ph.D. thesis, Aleksandras Stulginskis University, p 139 (in English)

  • Kerpauskaite V (2017) Effect of forest management on genetic diversity and spatial genetic structure of Scots pine. Ph.D. thesis, Aleksandras Stulginskis university, Akademija 2017, p 95

  • Kerr G, Haufe J (2011) Thinning practice. A silvicultural guide. Forestry commission. http://www.forestry.gov.uk/pdf/Silviculture_Thinning_Guide_v1_Jan2011.pdf/$FILE/Silviculture_Thinning_Guide_v1_Jan2011.pdf. Accessed 05 June 2018

  • Kohlstock N (1982) Neue Erkenntnisse in der Kiefern-Jungwuchpflege [New insights into the management of young pine stands]. Beiträge fur die Forstwirtschaft 4:155–159 (in German)

    Google Scholar 

  • Kräuter G (1965) Die Behandlung von Kiefernjungbeständen auf der Grundlage von biologischen und dynamischen Merkmalen der Einzelstämme. Conference report. AdL Berlin 75:337–342 (in German)

    Google Scholar 

  • Lindgren D, Paule L, Xihuan S, Yadzani R, Segerström U, Tallin J-E, Lejdebro ML (1995) Can viable pollen carry Scots pine genes over long distances? Grana 34:64–69

    Article  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liziniewicz M (2014) Influence of spacing and thinning on wood properties in conifer plantations. Doctoral dissertation. Acta Universitatis agriculturae Sueciae. p 96

  • Lockow K-W (1992) Kieferntypen und Bestandesbehandlung. Zum Wachstumsablauf und zur Wuchsdynamik der Kiefer miteinigen Schlussfolgerungenfür die Bestandesbehandlung [Pine types and stand treatment. On the growth process and the growth dynamics of pine with some conclusions for the stand treatment]. Der Wald 42(5):170–173 (in German)

    Google Scholar 

  • Lönnroth E (1925) Untersuchungen über die innere Struktur und Entwicklung gleichaltriger naturnormaler Kiefernbestände, basiert auf Material aus der Südhälfte Finnlands [Research into the internal structure and evolution of the same age normal natural pine stands, based on the materials from the southern half of Finland]. Acta Forestalia Fennica Nr 30:1–269 (in German)

  • Makarov V, Iozus A, Morozova E (2014) Estimation of the heritability of selected breeding material by speed of growth of the seed progeny in the conditions of dry steppe in lower Volga region. Mod Prob Sci Educ No 4. http://science-education.ru/ru/article/view?id=14317. Accessed 14 Mar 2019 (in Russian)

  • Makrickiene E (2017) Environmental and genetic attributes of wolf trees’ morphological types in scots pine (Pinus sylvestris L.). ASU, Kaunas, p 130

    Google Scholar 

  • Makrickiene E, Drössler L, Brazaitis G (2016) Development and traits of wolf trees in Scots pine (Pinus sylvestris L.): a literature review. Baltic For 22(1):181–188

    Google Scholar 

  • Mason WL, Alia R (2000) Current and future status of Scots pine (Pinus sylvestris L.) forests in Europe. Investigacion Agraria: Sistemos y Recursos Forestales Fuera de Serie 1–2000:317–333

    Google Scholar 

  • Namkoong G, Boyle TJB, Gregorius H-R, Joly H, Savolainen O, Ratnam W, Young A (1996) Testing criteria and indicators for assessing the sustainability of forest management: genetic criteria and indicators. CIFOR working paper No. 10. CIFOR, Bogor, Indonesia, 15 pp

  • Naydenov K, Senneville S, Beaulieu J, Tremblay F, Bousquet J (2007) Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evol Biol 7(1):233

    Article  PubMed  PubMed Central  Google Scholar 

  • Neale DB, Sederoff RR (1989) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor Appl Genet 77(2):212–216

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Nilsson J-E (1991) The value of early testing. In: Giertych M, Mįtyįs CS (eds) Genetics of Scots pine. Elsevier, Amsterdam, pp 255–263

    Google Scholar 

  • Nilsson U, Albrektsson A (1993) Productivity of needles and allocation of growth in young Scots pine trees of different competitive status. For Ecol Manag 62(1–4):173–187

    Article  Google Scholar 

  • Nilsson U, Agestam E, Eko P-M, Elfving B, Fahlvik N, Johansson U, Karlsson K, Lundmark T, Wallentin C (2010) Thinning of Scots pine and Norway spruce monocultures in Sweden—effects of different thinning programmes on stand level gross- and net stem volume production. Technical report. Studia Forestalia Suecica No 219, 47 pp

  • Page RD (2001) TreeView. Glasgow University, Glasgow

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Persson A, Persson B (1992) Survival, growth and quality of Norway spruce (Picea abies (L.) Karst.) provenances at the three Swcdish sites of the IUFRO 1964/68 provenance experiment. Sweden University of Agricultural Sciences Department Forest Yield Research Report 29

  • Pofahl U, Lockow K-W, Läuter H (1979) Zur Lösung von Klassifizierungsproblemen mit Hilfe der mehrdimensionalen Varianzanalyse [Solution of classification problems using the multidimensional analysis of variance]. Beiträge für die Forstwirtschaft 13(2):41–48 (in German)

    Google Scholar 

  • Powell W, Morgante M, Andre C, McNicol JW, Machray GC, Doyle JJ, Tingey SV, Rafalski JA (1995) Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr Biol 5(9):1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Prescher F (1985) Framtida förädlingsstrategi for tall [Future breeding strategy for Scots pine]. Slutredogörelse till Skogs-och Jordbrukets Forskningsrâd. Swedish University of Agricultural Sciences, Department of Forestry Yielding Research, Department Note (in Swedish)

  • Preuhsler T (1979) Ertragskundliche Merkmale oberbayerischer Bergmischwald-Verjüngungsbestände auf kalkalpinen Standorten im Forstamt Kreuth. Forstl Forschungsber München 45:312–345 (in German)

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Provan J, Soranzo N, Wilson NJ, McNicol JW, Forrest GI, Cottrell J, Powell W (1998) Gene-pool variation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple-sequence repeats. Proc R Soc Lond 265:1697–1705

    Article  CAS  Google Scholar 

  • Schötte G (1917) Om snöskadorna i södra och mellersta Sveriges skogar åren 1915–1916. Meddelanden från statens skogs-försöksanstalt 13–14(1):111–175 (In Swedish)

    Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9(5):615–629

    Article  PubMed  Google Scholar 

  • Sinclair WT, Morman JD, Ennos RA (1999) The postglacial history of Scots pine (Pinus sylvestris L.) in Western Europe: evidence from mitochondrial DNA variation. Mol Ecol 8:83–88

    Article  Google Scholar 

  • Uusvaara O (1991) Havaintoja nuorten istutusmänniköiden oksikkuudesta ja puuaineen laadusta. [Observations about the branchiness and the wood quality of young plantation-grown Scots pine.] Metsäntutkimuslaitoksen tiedonantoja 377, 56 p (In Finnish with English summary)

  • Vanninen P, Mäkelä A (2005) Carbon budget for Scots pine trees: effects of size, competition and site fertility on growth allocation and production. Tree Physiol 25:17–30

    Article  PubMed  Google Scholar 

  • Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:595–598

    Article  CAS  PubMed  Google Scholar 

  • Wiedemann E (1943) Kiefern-Ertragstafel für mäßige Durchforstung, starke Durchforstung und Lichtung [A yield table for moderate thinning, heavy thinning and light-enchancing thinning in pine]. In: Schober R (ed) Ertragstafeln wichtiger Holzarten bei verschiedener Durchforstung, 4th edn. Sauerländer, Frankfurt am Main, pp 98–115 (in German)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Makrickiene.

Additional information

Communicated by Christian Ammer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makrickiene, E., Danusevičius, D., Brazaitis, G. et al. Morphological and genetic differentiation of wolf trees in Scots pine stands based on chloroplast microsatellite markers. Eur J Forest Res 138, 527–537 (2019). https://doi.org/10.1007/s10342-019-01185-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-019-01185-3

Keywords