Site and age-dependent responses of Picea abies growth to climate variability

Abstract

Knowledge about spatiotemporal variability of climate change effect on tree-ring width (TRW) and crown condition is essential to optimize the modelling of future forest ecosystem responses to the changing climate. Geographical differences in the climate–growth relationship are a reflection of the regional climatic conditions mainly. In this study, 175 Picea abies trees from the north-western edge of its geographical distribution in Central Norway were evaluated with respect to geographical and age-dependent differences during the common period of 1950–2015. The results showed that the most significant positive correlations between TRW and the current June temperature were unstable although the temperature increased. The correlations suddenly started to decrease (regardless of the site placement and tree age) at the beginning of the 1990s, but subsequently unexpectedly increased in the 2010s. The superposed epoch analysis revealed longer TRW regeneration of the southern plots (except over-mature trees) after negative pointer years compared to the northern plots. Previous summer temperature and related physiological processes (cone crops, storage of nutrients, etc.) significantly negatively affected P. abies growth in the current year. Additionally, our results showed that the selection of the chronology version (standard or residual) significantly affects the resulting correlations and thus must be carefully considered in dendroclimatological studies. Our main outputs can contribute to better understanding of the climate–growth relationship variability and general prediction of the radial growth.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Andreassen K, Solberg S, Tveito OA, Lystad SL (2006) Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. For Ecol Manag 222(1–3):211–221. https://doi.org/10.1016/j.foreco.2005.10.029

    Article  Google Scholar 

  2. Applequist MB (1958) A simple pith locator for use with off-centre increment cores. J For 56:141

    Google Scholar 

  3. Babst F, Carrer M, Poulter B, Urbinati C, Neuwirth B, Frank D (2012) 500 years of regional forest growth variability and links to climatic extreme events in Europe. Environ Res Lett 7:045705. https://doi.org/10.1088/1748-9326/7/4/045705

    Article  Google Scholar 

  4. Baillie MGL, Pilcher JR (1973) A simple cross-dating program for tree-ring research. Tree-Ring Bull 33:7–14

    Google Scholar 

  5. Bauer E, Claussen M, Brovkin V (2003) Assessing climate forcings of the Earth system for the past millennium. Geophys Res Lett. https://doi.org/10.1029/2002GL016639

    Article  Google Scholar 

  6. Biondi F, Waikul K (2004) DendroClim2002: a C++ program for statistical calibration of climate signals in tree ring chronologies. Comput Geosci 30:303–311. https://doi.org/10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  7. Bošeľa M, Sedmák R, Marušák R, Sedmáková D, Petráš R, Barna M (2014) Evaluating similarity of radial increments around tree stem circumference of European beech and Norway spruce from Central Europe. Geochronometria 41(2):136–146. https://doi.org/10.2478/s13386-013-0152-3

    Article  Google Scholar 

  8. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree growth to temperature at high northern latitudes. Nature 391:678–682

    Article  CAS  Google Scholar 

  9. Büntgen U, Frank DC, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2006) Growth/climate response shift in a long subalpine spruce chronology. Trees Struct Funct 20:99–110. https://doi.org/10.1007/s00468-005-0017-3

    Article  Google Scholar 

  10. Büntgen U, Brázdil R, Dobrovolný P, Trnka M, Kyncl T (2011) Five centuries of Southern Moravian drought variations revealed from living and historic tree rings. Theor Appl Climatol 105(1–2):167–180. https://doi.org/10.1007/s00704-010-0381-9

    Article  Google Scholar 

  11. Büntgen U, Kyncl T, Ginzler Ch, Jacks DS, Esper J, Tegel W, Heussner K-U, Kyncl J (2013) Filling the Eastern European gap in millennium-long temperature reconstructions. PNAS 110(5):1773–1778. https://doi.org/10.1073/pnas.1211485110

    Article  CAS  PubMed  Google Scholar 

  12. Buras A, van der Maaten-Theunissen M, van der Maaten E, Ahlgrimm S, Hermann P, Simard S, Heinrich I, Helle G, Unterseher M, Schnittler M, Eusemann P, Wilmking M (2016) Tuning the voices of a choir: detecting ecological gradients in time-series populations. PloS ONE 11(7):e0158346. https://doi.org/10.1371/journal.pone.0158346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buras A, Spyt B, Janecka K, Kaczka R (2018) Divergent growth of Norway spruce on Babia Góra Mountain in the western Carpathians. Dendrochronologia 50:33–43. https://doi.org/10.1016/j.dendro.2018.04.005

    Article  Google Scholar 

  14. Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85(3):730–740. https://doi.org/10.1890/02-0478

    Article  Google Scholar 

  15. Čermák P, Rybníček M, Žid T, Andreasssen K, Børja I, Kolář T (2017) Impact of climate change on growth dynamics of Norway spruce in south-eastern Norway. Silva Fenn 51(2):16. https://doi.org/10.14214/sf.1781

    Article  Google Scholar 

  16. Cienciala E, Tumajer J, Zatloukal V, Beranová J, Holá Š, Hůnová I, Russ R (2017) Recent spruce decline with biotic pathogen infestation as a result of interacting climate, deposition and soil variables. Eur J For Res 136:307–317. https://doi.org/10.1007/s10342-017-1032-9

    Article  Google Scholar 

  17. Cienciala E, Altman J, Doležal J, Kopáček J, Štěpánek P, Ståhl G, Tumajer J (2018) Increased spruce tree growth in Central Europe since 1960s. Sci Total Environ 619–620:1637–1647. https://doi.org/10.1016/j.scitotenv.2017.10.138

    Article  CAS  PubMed  Google Scholar 

  18. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in environmental science. Kluwer, Dordrecht, pp 104–123

    Google Scholar 

  19. Cook ER, Krusic PJ (2005). ARSTAN v. 41d: a tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA

  20. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370. https://doi.org/10.1177/095968369700700314

    Article  Google Scholar 

  21. Cudlín P, Novotný R, Moravec I, Chmelíková E (2001) Retrospective evaluation of the response of montane forest ecosystems to multiple stress. Ekológia 20:108–124

    Google Scholar 

  22. D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Change 60:289–305. https://doi.org/10.1016/j.gloplacha.2007.03.004

    Article  Google Scholar 

  23. Day ME, Greenwood MS, White AS (2001) Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiol 21:1195–1204. https://doi.org/10.1093/treephys/21.16.1195

    Article  CAS  Google Scholar 

  24. Deslauriers A, Caron L, Rossi S (2015) Carbon allocation during defoliation: testing a defense-growth trade-off in balsam fir. Front Plant Sci 6:338. https://doi.org/10.3389/fpls.2015.00338

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ding H, Pretzsch H, Schütze G, Rötzer T (2017) Size-dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed-species stands. Plant Biol 19(5):709–719. https://doi.org/10.1111/plb.12596

    Article  CAS  PubMed  Google Scholar 

  26. Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–333. https://doi.org/10.1007/s10342-005-0085-3

    Article  Google Scholar 

  27. Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwiss Centralblatt 88:230–250

    Article  Google Scholar 

  28. Eichhorn J, Roskams P, Ferretti M, Mues V, Szepesi A, Durrant D (2010) Visual assessment of crown condition and damaging agents. Manual Part IV. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Co-ordinating Centre, Hamburg. ISBN: 978-3-926301-03-1. https://www.icp-forests.org/Manual.htm Accessed May 2010

  29. EUFORGEN (2009) Distribution map of Norway spruce (Picea abies). https://www.euforgen.org Accessed 24 July 2008

  30. Foster JR, Finley AO, D’Amato AW, Bradford JB, Banerjee S (2016) Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition, or climate response most important? Glob Change Biol 22(6):2138–2151. https://doi.org/10.1111/gcb.13208

    Article  Google Scholar 

  31. Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Species-specific climate sensitivity of tree growth in central-west Germany. Trees Struct Funct 23:729–739

    Article  Google Scholar 

  32. Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  33. Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57(2):205–221

    Google Scholar 

  34. Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34(3):623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  35. Hartl-Meier C, Zang C, Dittmar C, Esper J, Göttlein A, Rothe A (2014) Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Clim Res 60:119–132. https://doi.org/10.3354/cr01226

    Article  Google Scholar 

  36. Helama S, Lindholm M, Timonen M, Eronen M (2004) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theor Appl Climatol 79:239–254. https://doi.org/10.1007/s00704-004-0077-0

    Article  Google Scholar 

  37. Hofgaard A, Ols C, Drobyshev I, Kirchhefer AJ, Sandberg S, Söderström L (2018) Non-stationary response of tree growth to climate trends along the Arctic margin. Ecosystems. https://doi.org/10.1007/s10021-018-0279-4

    Article  Google Scholar 

  38. Hollstein E (1980) Mitteleuropäische Eichenchronologie. Triererdendrochronologische Forschungen zur Archäologie und Kunstgeschichte. Trierer Grabungen und Forschungen, Mainz am Rhein

    Google Scholar 

  39. Holmsgaard E, Bang C (1989) Loss of volume increment due to cone production in Norway spruce. Det forstlige Forsøgsvæsen i Danmark 42:215–231

    Google Scholar 

  40. IPCC (2014) Climate change 2007: the physical science basis. Technical report. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Ambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  41. Juntunen V, Neuvonen S (2006) Natural regeneration of Scots Pine and Norway spruce close to the timberline in northern Finland. Silva Fenn 40(3):443–458. https://doi.org/10.14214/sf.329

    Article  Google Scholar 

  42. Karl T, Arquez A, Huang B, Lawrimore JH, McMahon JR (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Science 348:1469–1472. https://doi.org/10.1126/science.aaa5632

    Article  CAS  PubMed  Google Scholar 

  43. Kienast F, Schweingruber FH, Bräker OU, Schär E (1987) Tree ring studies on conifers along ecological gradients and the potential of single-year analyses. Can J For Res 17:683–696. https://doi.org/10.1139/x87-111

    Article  Google Scholar 

  44. Kivinen S, Rasmus S, Jylhä K, Laapas M (2017) Long-term climate trends and extreme events in Northern Fennoscandia (1914–2013). Climate 5:16. https://doi.org/10.3390/cli5010016

    Article  Google Scholar 

  45. Kolář T, Čermák P, Oulehle F, Trnka M, Štěpánek P, Cudlín P, Hruška J, Büntgen U, Rybníček M (2015) Pollution control enhanced spruce growth in the “Black Triangle” near the Czech-Polish border. Sci Total Environ 538:703–711. https://doi.org/10.1016/j.scitotenv.2015.08.105

    Article  CAS  PubMed  Google Scholar 

  46. Kolář T, Čermák P, Trnka M, Žid T, Rybníček M (2017) Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric For Meteorol 239:24–33. https://doi.org/10.1016/j.agrformet.2017.02.028

    Article  Google Scholar 

  47. Konter O, Büntgen U, Carrer M, Timonen M, Esper J (2016) Climate signal age effects in boreal tree-rings: lessons to be learned for paleoclimatic reconstructions. Quat Sci Rev 142:164–172. https://doi.org/10.1016/j.quascirev.2016.04.020

    Article  Google Scholar 

  48. Kullman L (1996) Recent cooling and recession of Norway spruce [Picea abies (L.) Karst.] in the forest-alpine tundra ecotone of the Swedish Scandes. J Biogeogr 23:843–854. https://doi.org/10.1111/j.1365-2699.1996.tb00042.x

    Article  Google Scholar 

  49. Linares JC, Taïqui L, Sangüesa-Barreda G, Seco JI, Camarero JJ (2013) Age-related drought sensitivity of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Dendrochronologia 31:88–96. https://doi.org/10.1016/j.dendro.2012.08.003

    Article  Google Scholar 

  50. Lindholm M, Lehtonen H, Kolström T, Meriläinen J, Eronen M, Timonen M (2000) Climatic signals extracted from ring-width chronologies of scots pines from the northern, middle and southern parts of the boreal forest belt in Finland. Silva Fenn 34(4):317–330. https://doi.org/10.14214/sf.616

    Article  Google Scholar 

  51. Lyu L, Suvanto S, Nöjd P, Henttonen HM, Mäkinen H, Zhang Q (2017) Tree growth and its climate signal along latitudinal and altitudinal gradients: comparison of tree rings between Finland and Tibetan Plateau. Biogeoscience 14(12):3083–3095. https://doi.org/10.5194/bg-2016-559

    Article  Google Scholar 

  52. Mäkinen H, Nöjd P, Mielikäinen K (2001) Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees 15(3):177–185. https://doi.org/10.1007/s004680100089

    Article  Google Scholar 

  53. Mäkinen H, Nöjd P, Kahle HP, Neumann U, Tveite B, Mielikäinen K, Röhle H, Spiecker H (2003) Large-scale climatic variability and radial increment variation Picea abies (L.) Karst. in central and northern Europe. Trees Struct Funct 17:173–184. https://doi.org/10.1007/s00468-002-0220-4

    Article  Google Scholar 

  54. McMillan AMS, Winston GC, Goulden ML (2008) Age-dependent response of boreal forest to temperature and rainfall variability. Glob Change Biol 14:1904–1916. https://doi.org/10.1111/j.1365-2486.2008.01614.x

    Article  Google Scholar 

  55. Mencuccini M, Piussi P (1995) Production of seeds and cones and consequences for wood radial increment in Norway spruce (Picea abies (L.) Karst.). G Bot Ital 129:797–812

    Article  Google Scholar 

  56. Mencuccini M, Martínez-Vilalt J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B (2005) Size-mediated ageing reduces vigour in trees. Ecol Lett 8:1183–1190. https://doi.org/10.1111/j.1461-0248.2005.00819.x

    Article  CAS  Google Scholar 

  57. Mencuccini M, Martínez-Vilalta J, Hamid HA, Korakaki E, Vanderklein D (2007) Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiol 27:463–473. https://doi.org/10.1093/treephys/27.3.463

    Article  Google Scholar 

  58. Michel A, Seidling W (eds) (2016) Forest condition in Europe: 2016 technical report of ICP Forests. Report under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). BFWDokumentation 23/2016. BFW Austrian Research Centre for Forests, Vienna

  59. Miina J (2000) Dependence of tree-ring, earlywood and latewood indices of Scots pine and Norway spruce on climatic factors in eastern Finland. Ecol Model 132:259–273. https://doi.org/10.1016/S0304-3800(00)00296-9

    Article  Google Scholar 

  60. Ponocná T, Spyt B, Kaczka R, Büntgen U, Treml V (2016) Growth trends and climate responses of Norway spruce along elevational gradients in East-Central Europe. Trees Struct Funct 30(5):633–1646. https://doi.org/10.1007/s00468-016-1396-3

    Article  CAS  Google Scholar 

  61. Pretzsch H, Schütze G, Biber P (2018) Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech. For Ecosyst 5:20. https://doi.org/10.1186/s40663-018-0139-x

    Article  Google Scholar 

  62. Primicia I, Camarero JJ, Janda P, Čada V, Morrissey RC, Trotsiuk V, Bače R, Teodosiu M, Svoboda M (2015) Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. For Ecol Manag 354:77–86. https://doi.org/10.1016/j.foreco2015.06.034

    Article  Google Scholar 

  63. Rivas-Martínez S, Penas A, Díaz TE (2004) Bioclimatic map of Europe, bioclimates. Cartographic Service, University of Léon, Spain. http://www.globalbioclimatics.org/form/maps.htm. Accessed 15 July 2004

  64. Rosner S, Gierlinger N, Klepsch M, Karlsson B, Evans R, Lundqvist SO, Svĕtlík J, Børja I, Dalsgaard L, Andreassen K, Solberg S, Jansen S (2018) Hydraulic and mechanical dysfunction of Norway spruce sapwood due to extreme summer drought in Scandinavia. For Ecol Manag 409:527–540. https://doi.org/10.1016/j.foreco.2017.11.051

    Article  Google Scholar 

  65. Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008) Age-dependent xylogenesis in timberline conifers. New Phytol 177:199–208. https://doi.org/10.1111/j.1469-8137.2007.02235.x

    Article  Google Scholar 

  66. Rozas V, DeSoto L, Olano JM (2009) Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytol 182(3):687–697. https://doi.org/10.1111/j.1469-8137.2009.02770.x

    Article  Google Scholar 

  67. Rybníček M, Gryc V, Vavrčík H, Horáček P (2007) Annual ring analysis of the root system of Scots pine. Wood Res Slovakia 52(3):1–14

    Google Scholar 

  68. Rybníček M, Čermák P, Kolář T, Přemyslovská E, Žid T (2009) Influence of temperatures and precipitation on radial increment of Orlické hory Mts. spruce stands at altitudes over 800 m a.s.l. J For Sci 55(6):257–263

    Article  Google Scholar 

  69. Rybníček M, Čermák P, Hadaš P, Kolář T, Žid T (2012a) Dendrochronological analysis and habitual stress diagnostic assessment of Norway spruce (Picea abies) stands in the Drahany Highlands. Wood Res 57(2):189–206. https://doi.org/10.2478/s13386-012-0003-7

    Article  Google Scholar 

  70. Rybníček M, Čermák P, Žid T, Kolář T (2012b) Growth responses of Picea abies to climate in the Central Part of the Českomoravská Upland (Czech Republic). Dendrobiology 68(1):21–30

    Google Scholar 

  71. Seidling W, Mues V (2005) Statistical and geostatistical modelling of preliminarily adjusted defoliation on an European scale. Environ Monit Assess 101:223–247. https://doi.org/10.1007/s10661-005-9304-0

    Article  PubMed  Google Scholar 

  72. Selås V, Piovesan G, Adams JM, Bernabei M (2002) Climatic factors controlling reproduction and growth of Norway spruce in southern Norway. Can J For Res 32(2):217–225. https://doi.org/10.1139/x01-192

    Article  Google Scholar 

  73. Sellers PJ, Hall FH, Kelly RD, Black A, Baldocchi D, Berry J, Ryan M, Ranson J, Crill PM, Lettenmaier DP, Margolis H, Cihlar J, Newcomer J, Fitzjarrald DT, Jarvis PJ, Gower ST, Halliwell D, Williams D, Goodison B, Wickland DE, Guertin FE (1997) BOREAS in 1997: experiment overview, scientific results, and future directions. J Geophys Res 102(24):28731–28769. https://doi.org/10.1029/97JD03300

    Article  Google Scholar 

  74. Sidor CG, Popa I, Vlad R, Cherubini P (2015) Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees Struct Funct 29(4):985–997. https://doi.org/10.1007/s00468-015-1178-3

    Article  Google Scholar 

  75. Solberg BØ, Hofgaard A, Hytteborn H (2002) Shifts in radial growth responses of coastal Picea abies induced by climatic change during the 20th century, central Norway. Écoscience 9(1):79–88. https://doi.org/10.1080/11956860.2002.11682693

    Article  Google Scholar 

  76. Stokes MA, Smiley TL (1996) An introduction to tree-ring dating, 2 edn. University of Arizona Press. ISBN-10: 0816516804

  77. Strand L (ed) (1997) Monitoring the environmental quality of Nordic Forests. Nordic Council of Ministers

  78. Tveite B (1987) Air pollution and forest damage in Norway. In: Hutchinson TC, Meema KM (eds) Effects of atmospheric pollutants on forests, wetlands and agricultural ecosystems. NATO ASI Series (Series G: Ecological Sciences), vol 16. Springer, Berlin. https://doi.org/10.1007/978-3-642-70874-9_4

  79. Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees 23:257–265. https://doi.org/10.1007/s00468-008-0273-0

    Article  Google Scholar 

  80. Waldner P, Marchetto A, Thimonier A, Schmitt M, Rogora M, Granke O, Mues V, Hansen K, Karlsson GP, Žlindra D, Clarke N, Verstraeten A, Lazdins A, Schimming C, Iacoban C, Lindroos A-J, Vanguelova E, Benham S, Meesenburg H, Nicolas M, Kowalska A, Apuhtin V, Napa U, Lachmanová Z, Kristoefel F, Bleeker A, Ingerslev M, Vesterdal L, Molina J, Fischer U, Seidling W, Jonard M, O’Dea P, Johnson J, Fischer R, Lorenz M (2014) Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmos Environ 95:363–374. https://doi.org/10.1016/j.atmosenv.2014.06.054

    Article  CAS  Google Scholar 

  81. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Appl Meteorol Clim 23:201–213

    Article  Google Scholar 

  82. Wilmking M, D’Arrigo RD, Jacoby GC, Juday GP (2005) Increased temperature sensitivity and divergent growth trends in circumpolar boreal forests. Geophys Res Lett 32:L15715. https://doi.org/10.1029/2005.GL023331

    Article  Google Scholar 

  83. Wright RF, Rudi G, Frogner T, Håøya A-O, Cosby BJ, Esser JM (1992) Map of critical loads for coniferous forest soils in Norway. NIVA—Report, Norwegian Forest Research Institute, Norwegian Institute for Water Research and Norwegian Institute for Land Inventory, https://brage.bibsys.no/xmlui/handle/11250/207092. Accessed December 1992

Download references

Acknowledgements

The paper was supported by the EEA Grants project “Frameworks and possibilities of forest adaptation measures and strategies connected with climate change” (No. EHP-CZ02-OV-1-019-2014) and the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPUI), Grant Number LO1415.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petr Čermák.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Miren del Rio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 Spatial correlations between climate data (temperature upper figures, precipitation lower figures) from CRU database (TS4.0; 63°–66.5°N, 10°–15°E, dry land) and local climate stations for the common 1981–2010 period. The climate stations representing the study area include: (a), (d) Susendal (northern part of the study area); (b), (e) Harran (central part) and (c), (f) Namdal (southern part). Light green dots refer to climate stations, and light blue dots indicate the study plots (TIFF 2753 kb)

Fig. S2 Superposed epoch analysis of the indexed tree-ring width sub-chronologies relative to calculated negative pointer years. Significant values at p < 0.01 are indicated by full black circle. The 95% confidence interval is shown in grey shading (TIFF 777 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Čermák, P., Rybníček, M., Žid, T. et al. Site and age-dependent responses of Picea abies growth to climate variability. Eur J Forest Res 138, 445–460 (2019). https://doi.org/10.1007/s10342-019-01182-6

Download citation

Keywords

  • Tree-ring width
  • Temperature
  • Precipitation
  • Boreal forest
  • Norway spruce