European Journal of Forest Research

, Volume 138, Issue 2, pp 275–285 | Cite as

Genetic diversity and differentiation of introduced red oak (Quercus rubra) in Germany in comparison with reference native North American populations

  • Tim Pettenkofer
  • Katharina Burkardt
  • Christian Ammer
  • Torsten Vor
  • Reiner Finkeldey
  • Markus Müller
  • Konstantin Krutovsky
  • Barbara Vornam
  • Ludger LeinemannEmail author
  • Oliver GailingEmail author
Original Paper


Northern red oak (Quercus rubra) was introduced to Europe in the late seventeenth century and has since become the most important deciduous non-native tree species in Germany. Despite its importance, little is known about the origin and patterns of genetic variation in German red oak stands. To be able to make recommendations regarding the adaptive potential of red oak stands, which might be related to their origin and the selection of provenances, with respect to climate change, a better understanding of the genetic diversity and structure of German red oak stands is needed. Individuals from 62 populations in Germany and North America were genotyped at five chloroplast microsatellite loci to characterize chloroplast haplotype diversity and geographic structure. Compared to reference populations from the natural distribution range, German red oak stands demonstrated a relatively low genetic differentiation among populations and represented only a fraction of the haplotype diversity found in North America. For several stands located in southern Germany, considerably higher haplotype diversity than in other German stands was found. While most German stands showed signatures of founder effects, the diversity of stands in southern Germany might have been increased due to admixture and multiple introductions of different North American provenances. Overall, we conclude that German stands originated from a limited geographic area, possibly located in the northern part of the native distribution range.


Chloroplast microsatellites cpSSRs Quercus rubra Haplotype diversity Origin Provenances 



We thank Alexandra Dolynska, Andreas Parth, Oliver Caré, Katrin Burger and Maximilian Boersch for their technical assistance. We also thank two anonymous reviewers for their helpful comments on earlier drafts and Edward Jones for attentive English editing. The study was supported by the German Federal Ministry of Food and Agriculture (Funding code 22023314).

Supplementary material

10342_2019_1167_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1411 kb)


  1. Alexander LW, Woeste KE (2014) Pyrosequencing of the northern red oak (Quercus rubra L.) chloroplast genome reveals high quality polymorphisms for population management. Tree Genet Genomes 10:803–812CrossRefGoogle Scholar
  2. Barrett SC, Husband BC (1990) The genetics of plant migration and colonization. In: Brown HD, Clegg MT, Kahler AL et al (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates Inc., Massachusetts, pp 254–277Google Scholar
  3. Bauer F (1951) Die Roteiche 1950. Eine ertragskundlich-biologische und holzkundliche Untersuchung. Dissertation, Universität GöttingenGoogle Scholar
  4. Bauer F (1954) Zur Rassenfrage der Roteiche. Allgemeine Forstzeitschrift 9:470–474Google Scholar
  5. Birchenko I, Feng Y, Romero-Severson J (2009) Biogeographical distribution of chloroplast diversity in northern red oak (Quercus rubra L.). Am Midl Nat 161:134–145CrossRefGoogle Scholar
  6. Borkowski DS, Hoban SM, Chatwin W, Romero-Severson J (2017) Rangewide population differentiation and population substructure in Quercus rubra L. Tree Genet Genomes 13:472CrossRefGoogle Scholar
  7. Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13:2101–2106CrossRefGoogle Scholar
  8. Bundesministerium für Ernährung und Landwirtschaft (BMEL) (2014) Der Wald in Deutschland. Ausgewählte Ergebnisse der dritten Bundeswaldinventur. Accessed 20 Mar 2018
  9. Burban C, Petit RJ, Carcreff E, Jactel H (1999) Rangewide variation of the maritime pine bast scale Matsucoccus feytaudi Duc. (Homoptera: Matsucoccidae) in relation to the genetic structure of its host. Mol Ecol 8:1593–1602CrossRefGoogle Scholar
  10. Chmura D (2013) Impact of alien tree species Quercus rubra L. on understorey environment and flora: A study of the silesian upland (southern Poland). Polish J Ecol 61:431–442Google Scholar
  11. Daubree JB, Kremer A (1993) Genetic and phenological differentiation between introduced and natural populations of Quercus rubra L. Ann For Sci 50:271s–280sCrossRefGoogle Scholar
  12. Deguilloux M-F, Dumolin-Lapègue S, Gielly D, Grivet D, Petit RJ (2003) A set of primers for the amplification of chloroplast microsatellites in Quercus. Mol Ecol Notes 3:24–27CrossRefGoogle Scholar
  13. Dlugosch KM, Parker IM (2008) Founding events in species invasions. Genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449CrossRefGoogle Scholar
  14. Dreßel R, Jäger EJ (2002) Beiträge zur Biologie der Gefäßpflanzen des herzynischen Raumes. 5. Quercus rubra L. (Roteiche): Lebensgeschichte und agriophytische Ausbreitung im Nationalpark Sächsische Schweiz. Hercynia 35:37–64Google Scholar
  15. Excoffier L, Lischer HLE (2010) Arlequin suite ver 3.5. A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefGoogle Scholar
  16. Gailing O, Wachter H, Heyder J, Rogge M, Finkeldey R (2009) Chloroplast DNA analyses of very old, presumably autochthonous Quercus robur L. stands in North Rhine-Westphalia. Allgemeine Forst- und Jagdzeitung 180:221–227Google Scholar
  17. Google Maps (2017b) Map. Populations south of the great lakes.,-82.2325253,7z/data=!4m2!6m1!1s1CaBHN6sHvvBYSIyeuU2vk4sRkzs?hl=de. Accessed 12 Dec 2017
  18. Graw J (2005) Genetik, 4th edn. Springer, BerlinGoogle Scholar
  19. Grivet D, Deguilloux M-F, Petit RJ, Sork VL (2006) Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe. Mol Ecol 15:4085–4093CrossRefGoogle Scholar
  20. Heuertz M, Fineschi S, Anzidei M, Pastorelli R, Salvini D, Paule L, Frascaria-Lacoste N, Hardy OJ, Vekemans X, Vendramin GG (2004) Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Mol Ecol 13:3437–3452CrossRefGoogle Scholar
  21. Hulme PE (2009) Trade, transport and trouble. Managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18CrossRefGoogle Scholar
  22. Liesebach M, Schneck V (2011) Entwicklung von amerikanischen und europäischen Herkünften der Roteiche in Deutschland. Forstarchiv 82:125–133Google Scholar
  23. Lind JF, Gailing O (2013) Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genet Genomes 9:707–722CrossRefGoogle Scholar
  24. Lind-Riehl JF, Sullivan AR, Gailing O (2014) Evidence for selection on a CONSTANS-like gene between two red oak species. Ann Bot 113:967–975CrossRefGoogle Scholar
  25. Little EL (1999) Range of Quercus rubra. U.S. Geological SurveyGoogle Scholar
  26. López de Heredia U, Carrión JS, Jiménez P, Collada C, Gil L (2007) Molecular and palaeoecological evidence for multiple glacial refugia for evergreen oaks on the Iberian Peninsula. J Biogeography 34:1505–1517CrossRefGoogle Scholar
  27. Magni Diaz CR (2004) Reconstitution de l’introduction de Quercus rubra L. en Europe et conséquences génétiques dans les populations allochtones. Dissertation, Ècole Nationale du Génie Rural, des Eaux et des Forêts (in French)Google Scholar
  28. Magni CR, Ducousso A, Caron H, Petit RJ, Kremer A (2005) Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol Ecol 14:513–524CrossRefGoogle Scholar
  29. Mayr E (1954) Change of the genetic environment and evolution. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. Allen & Unwin, London, pp 157–180Google Scholar
  30. Meimberg H, Hammond JI, Jorgensen CM, Park TW, Gerlach JD, Rice KJ, McKay JK (2006) Molecular evidence for an extreme genetic bottleneck during introduction of an invading grass to California. Biol Invasions 8:1355–1366CrossRefGoogle Scholar
  31. Merceron NR, Leroy T, Chancerel E, Romero-Severson J, Borkowski DS, Ducousso A, Monty A, Porté AJ, Kremer A (2017) Back to America. Tracking the origin of European introduced populations of Quercus rubra L. Genome 60:778–790CrossRefGoogle Scholar
  32. Möllerová J (2005) Notes on invasive and expansive trees and shrubs. Journal of Forest Science 51:19–23Google Scholar
  33. Nagel R-V (2015) Roteiche (Quercus rubra L.). In: Vor T, Spellmann H, Bolte A et al (eds) Potenziale und Risiken eingeführter Baumarten. Baumartenportraits mit naturschtuzfachlicher Bewertung. Univ.-Verl. Göttingen, Göttingen, pp 219–267Google Scholar
  34. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  35. Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol Monogr 76:521–547CrossRefGoogle Scholar
  36. Palmé AE, Su Q, Rautenberg A, Manni F, Lascoux M (2003) Postglacial recolonization and cpDNA variation of silver birch, Betula pendula. Mol Ecol 12:201–212CrossRefGoogle Scholar
  37. Peakall R, Smouse PE (2006) GenAlEx 6. Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  38. Peakall R, Smouse PE (2012) GenAlEx 6.5. Genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics (Oxford, England) 28:2537–2539CrossRefGoogle Scholar
  39. Petit RJ, Kremer A, Wagner DB (1993) Geographic structure of chloroplast DNA polymorphisms in European oaks. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 87:122–128CrossRefGoogle Scholar
  40. Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu J-L, Kremer A (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manage 156:49–74CrossRefGoogle Scholar
  41. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2. A software for genetic assignment and first-generation migrant detection. J Heredity 95:536–539CrossRefGoogle Scholar
  42. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245Google Scholar
  43. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci 94:9197–9201CrossRefGoogle Scholar
  44. Riepšas E, Straigytė L (2008) Invasiveness and ecological effects of red oak (Quercus rubra L.) in Lithuanian Forests. Baltic Forestry 14:122–130Google Scholar
  45. Roloff A, Grundmann B (2008) Klimawandel und Baumarten-Verwendung für Waldökosysteme. Technische Universität Dresden. Accessed 26 Feb 2018
  46. Romero-Severson J, Aldrich P, Feng Y, Sun W, Michler C (2003) Chloroplast DNA variation of northern red oak (Quercus rubra L.) in Indiana. New Forest 26:43–49CrossRefGoogle Scholar
  47. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462Google Scholar
  48. Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360CrossRefGoogle Scholar
  49. Vor T (2005) Natural regeneration of Quercus rubra L. (Red Oak) in Germany. In: Nentwig W, Bacher S, Cock MJW et al (eds) Biological invasions—From ecology to control, pp 111–123Google Scholar
  50. Vor T, Lüpke Bv (2004) Das Wachstum von Roteiche, Traubeneiche und Rotbuche unter verschiedenen Lichtbedingungen in den ersten beiden Jahren nach der Pflanzung. Forstarchiv 75:13–19Google Scholar
  51. Weising K, Gardner RC (1999) A set of conserved PCR Primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19CrossRefGoogle Scholar
  52. Zhang R, Hipp AL, Gailing O (2015) Sharing of chloroplast haplotypes among red oak species suggests interspecific gene flow between neighboring populations. Botany 93:691–700CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Forest Sciences and Forest EcologyUniversity of GoettingenGöttingenGermany
  2. 2.Faculty of Forest Sciences and Forest EcologyUniversity of GoettingenGöttingenGermany
  3. 3.University of KasselKasselGermany
  4. 4.Laboratory of Forest Genomics, Genome Research and Education CenterSiberian Federal UniversityKrasnoyarskRussia
  5. 5.Laboratory of Population Genetics, N. I. Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  6. 6.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA
  7. 7.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA
  8. 8.Center of Integrated Breeding ResearchUniversity of GoettingenGoettingenGermany

Personalised recommendations