Skip to main content

Advertisement

Log in

Carbon and nitrogen dynamics along the log bark decomposition continuum in a mesic old-growth boreal forest

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Narrowing the uncertainties in carbon (C) and nitrogen (N) dynamics during decomposition of coarse woody debris (CWD) can significantly improve our understanding of forest ecosystem functioning. We examined C, N and pH dynamics in the least studied CWD component—tree bark in a 66-year-long decomposition chronosequence. The relative C concentration decreased by ca. 32% in pine bark, increased by ca. 18% in birch bark and remained stable in spruce and aspen bark. Nitrogen increased in bark of all tree species. In conifer bark, it increased along with epixylic succession. Over 45 years, the relative C/N ratio in bark decreased by 63 and 45% for coniferous and deciduous species, respectively. Bark pH did not change. Due to bark fragmentation, the total C and N amounts in bark of individual logs of aspen, birch, pine and spruce decreased at average rates of 0.03, 0.02, 0.26 and 0.05 year−1, and 0.02, 0.02, 0.03 and 0.03 year−1, respectively. At the forest stand level, the total amounts of C and N in log bark were 853 and 21 kg ha−1 or 11.2 and 45.5% of the C and N amounts stored in downed logs and ca. 2.3–3.8 and 2.2–2.4%, respectively, of total C and N amounts stored in forest litter. In boreal forests, decomposing log bark may act as a long-term source of N for wood-inhabiting communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson LI, Hytteborn H (1991) Bryophytes and decaying wood: a comparison between managed and natural forest. Holarct Ecol 14(2):121–130

    Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen, p 628

    Google Scholar 

  • Basilier K, Granhall U, Stenstrom TA (1978) Nitrogen fixation in wet minerotrophic moss communities of a subarctic mire. Oikos 31:236–246

    Article  CAS  Google Scholar 

  • Berg B (1988) Dynamics of nitrogen (15N) in decomposing Scots pine needle litter. Long term decomposition in a Scots pine forest. VI. Can J Bot 66:1539–1546

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin

    Book  Google Scholar 

  • Bert D, Danjon F (2006) Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For Ecol Manag 222:279–295

    Article  Google Scholar 

  • Boddy L, Watkinson SC (1995) Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot 73(S1):1377–1383

    Article  Google Scholar 

  • Busse MD (1994) Downed bole-wood decomposition in lodgepole pine forests of central Oregon. Soil Sci Soc Am J 58:221–227

    Article  Google Scholar 

  • Chen H, Harmon ME, Griffiths RP (2001) Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest: a chronosequence approach. Can J For Res 31:246–260

    Article  CAS  Google Scholar 

  • Crawford RL (1981) Lignin biodegradation and transformation. Wiley, New York, p 170

    Google Scholar 

  • Deineko IP, Faustova NM (2015) Element and group chemical composition of aspen bark and wood. Khimiya rastitel`nogo syir`ya 1: 51–62 (in Russian)

  • Deineko IP, Deineko IV, Belov LP (2007) Investigation of the chemical composition of pine bark. Khimiya rastitel`nogo syir`ya 1: 19–24 (In Russian)

  • Dossa GGO, Paudel ECK, Schaefer D, Harrison RD (2017) Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species. Sci Rep 6 Article number: 34153

  • Downs MR, Mtchener RH, Fry B, Nadelhoffer KJ (1999) Routine measurement of dissolved inorganic 15N in streamwater. Environ Monit Assess 55:211–220

    Article  CAS  Google Scholar 

  • Dynesius M, Jonsson BG (1991) Dating uprooted trees: comparison and application of eight methods in a boreal forest. Can J For Res 21:655–665

    Article  Google Scholar 

  • Ellis BE (1973) Catabolic ring-cleavage of tyrosine in plant cell cultures. Planta 111(2):113–118

    Article  PubMed  CAS  Google Scholar 

  • Faustova NM (2002) Chemical composition of bark and wood of aspen Populus tremula L.. Dissertation. St. Petersburg Press, pp 208 (in Russian)

  • Fedorchuk VN, Neshataev VYu, Kuznetsova ML (2005) Forest ecosystems of the north-western regions of Russia: typology, dynamics, management features. St. Petersburg Press, p 382 (in Russian)

  • Fedorets NG (2006) Soil diversity and biodiversity in the middle-taiga ecosystem. Karelian Research Centre RAS Press, pp 287 (in Russian)

  • Fedorets NG, Bahmet ON (2003) Ecological settings of carbohydrate and nitrogen transformations in forest soils. Petrozavodsk. Karelian Research Centre RAS Press, pp 240 (in Russian)

  • Fedorets NG, Morozova RM, Bakhmet AN, Solodovnikov AN (2006) The soils and soil cover of the Kivach Strict Nature Reserve. Proc Karelian Centre Sci Russ Acad Sci 10:3–34 (in Russian)

    Google Scholar 

  • Fly SC (1988) Growing plant cell wall: chemical and metabolic analysis. Longman, London

    Google Scholar 

  • Foster JR, Lang GE (1982) Decomposition of red spruce and balsam fir boles in the White Mountains of New Hampshire. Can J For Res 12(3):617–626

    Article  CAS  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–221

    Article  CAS  Google Scholar 

  • Ganjegunte GK, Condron LM, Clinton PW, Davis MR, Mahieu N (2004) Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. For Ecol Manag 187:197–211

    Article  Google Scholar 

  • Gorshkova TA (2007) Plant cell wall as a dynamic system. Moscow Publ., Nauka, Moscow (in Russian)

    Google Scholar 

  • Granhall U, Hofsten AV (1976) Nitrogenase activity in relation to intracellular organisms in Sphagnum mosses. Physiol Plant 36:88–94

    Article  Google Scholar 

  • Grodzińska K (1982) Monitoring of air pollutants by mosses and tree bark. In: Steubing L, Jager HJ (eds) Monitoring of air pollutants by plants. Dr. W. Junk Publishers, The Hague, pp 33–42

    Google Scholar 

  • Gundale MJ, Gustafsson H, Nilsson MC (2009) The sensitivity of nitrogen fixation by a feathermoss–cyanobacteria association to litter and moisture variability in young and old boreal forest. Can J For Res 39:2542–2549

    Article  CAS  Google Scholar 

  • Gustafsson L, Eriksson I (1995) Factors of importance for the epiphytic vegetation of aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. J Appl Ecol 32:412–424

    Article  Google Scholar 

  • Hafner SD, Groffman PM (2005) Soil nitrogen cycling under litter and coarse woody debris in a mixed forest in New York State. Soil Biol Biochem 37(11):2159–2162

    Article  CAS  Google Scholar 

  • Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Plant litter quality and decomposition. CAB-International, Wallingford, pp 33–46

    Google Scholar 

  • Harkin JM, Rowe JW (1971) Bark and its possible uses. USDA Forest Service Research Note, FPL 091. USDA, Forest Service, Forest Products Laboratory, Madison, pp 56

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Article  Google Scholar 

  • Harmon ME, Sexton J, Caldwell BA, Carpenter SE (1994) Fungal sporocarp mediated losses of Ca, Fe, K, Mg, Mn, N, P, and Zn from conifer logs in the early stages of decomposition. Can J For Res 24:1883–1893

    Article  CAS  Google Scholar 

  • Harmon ME, Fasth B, Woodall C, Sexton J (2013) Carbon concentration of standing and downed woody detritus: effects of tree taxa, decay class, position, and tissue type. For Ecol Manag 291:259–267

    Article  Google Scholar 

  • Hauck M (2011) Site factors controlling epiphytic lichen abundance in northern coniferous forests. Flora 206:81–90

    Article  Google Scholar 

  • Hendrickson OQ (1991) Abundance and activity of N2 fixing bacteria in decaying wood. Can J For Res 21:1299–1304

    Article  Google Scholar 

  • Herrmann S, Prescott CE (2008) Mass loss and nutrient dynamics of coarse woody debris in three Rocky Mountain coniferous forests: 21 year results. Can J For Res 38:125–132

    Article  Google Scholar 

  • Hicks WT, Harmon ME, Myrold DD (2003) Substrate controls on nitrogen fixation and respiration in woody debris from the Pacific Northwest, USA. For Ecol Manag 176:25–35

    Article  Google Scholar 

  • Higuchi T (1985) Biosynthesis of lignin. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Tokyo, pp 141–160

    Chapter  Google Scholar 

  • Hölttä T, Kurppa M, Nikinmaa E (2013) Scaling of xylem and phloem transport capacity and resource usage with tree size. Front Plant Sci 4:496

    Article  PubMed  PubMed Central  Google Scholar 

  • Irzhigitova DM, Korchikov ES (2011) Some chemical characteristics of tree bark as a substrate for lichen`s developing (in Krasnosamarsky forest as an example). Vestnik SanSU 5(86):144–152 (in Russian)

    Google Scholar 

  • Jansová I, Soldán Z (2006) The habitat factors that affect the composition of bryophyte and lichen communities on fallen logs. Preslia 78:67–86

    Google Scholar 

  • Jia-bing W, De-xin G, Shi-jie H, Mi Z, Chang-jie J (2005) Ecological functions of coarse woody debris in forest ecosystem. J For Res 16(3):247–252

    Article  Google Scholar 

  • Johnson CE, Siccama TG, Denny EG, Koppers MM, Vogt DJ (2014) In situ decomposition of northern hardwood tree boles: decay rates and nutrient dynamics in wood and bark. Can J For Res 44(12):1515–1524

    Article  CAS  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143

    Article  PubMed  CAS  Google Scholar 

  • Kazartsev I, Shorohova E, Kapitsa E, Kushnevskaya E (2018) Decaying Picea abies log bark hosts diverse fungal communities. Fungal Ecol 33:1–12

    Article  Google Scholar 

  • Kazimirov NI, Morozova RM (1973) Biological cycle of nutrients in spruce forests of Karelia. Leningrad Press, Nauka, Moscow (in Russian)

    Google Scholar 

  • Kazimirov NI, Volkov AD, Zyabchenko SS, Ivanchenko AL (1977) Nutrients and energy exchange in pine forests of European North. Leningrad Press, Moscow (in Russian)

    Google Scholar 

  • Kazimirov NI, Morozova RM, Kulikova VN (1978) Organic matter and nutrient flows in birch forest of middle taiga forest zone. Leningrad Press, Nauka, Moscow (in Russian)

    Google Scholar 

  • Klavina D, Pennanen T, Gaitnieks T, Velmala S, Lazdins A, Lazdina D, Menkis A (2016) The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilisation with wood ash. Mycorrhiza 26(2):153–160

    Article  PubMed  Google Scholar 

  • Korbukova IV (1996) Features of the chemical composition of inner and outer bark of Pinus sylvestris L. Dissertation. St. Petersburg Press (in Russian)

  • Krankina ON, Harmon ME (1995) Dynamics of the dead wood carbon pool in Northwestern Russian boreal forests. Water Air Soil Pollut 82:227–238

    Article  CAS  Google Scholar 

  • Krankina ON, Harmon ME, Griazkin AV (1999) Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. Can J For Res 29:20–32

    Article  Google Scholar 

  • Kravchenko IK, Doroshenko EV (2003) Nitrogen-fixing activity in peat soils from a raised bog. Microbiology 72:111–116

    PubMed  CAS  Google Scholar 

  • Kushnevskaya H, Shorohova E (2018) Presence of bark influences the succession of cryptogamic wood-inhabiting communities on conifer fallen logs. Folia Geobot 53:175–190

    Article  Google Scholar 

  • Kushnevskaya H, Mirin D, Shorohova E (2007) Patterns of epixylic vegetation on spruce logs in late successional boreal forests. For Ecol Manag 250(1–2):25–33

    Article  Google Scholar 

  • Laiho R, Prescott CE (1999) The contribution of coarse woody debris to carbon, nitrogen and phosphorus cycles in three Rocky Mountain coniferous forests. Can J For Res 29:1592–1603

    Article  Google Scholar 

  • Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J For Res 34:763–777

    Article  CAS  Google Scholar 

  • Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: Variation within and between 41 North American species. Biomass Bioenergy 25:381–388

    Article  CAS  Google Scholar 

  • LeBauer DS, Tresender KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Leppänen SM, Salemaa M, Smolander A, Mäkipää R, Tiirola M (2013) Nitrogen fixation and methanotrophy in forest mosses along a N deposition gradient. Environ Exp Bot 90:62–69

    Article  CAS  Google Scholar 

  • Liski J, Perruchoud D, Karjalainen T (2002) Increasing carbon stocks in the forest soils of Western Europe. For Ecol Manag 169:159–175

    Article  Google Scholar 

  • Lombardi F, Cherubini P, Tognetti R, Cocozza C, Lasserre B, Marchetti M (2013) Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean mountain forests. Ann For Sci 70:101–111

    Article  Google Scholar 

  • Lu M, Zhou XH, Luo YQ, Yang YH, Fang CM (2011) Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric Ecosyst Environ 140:234–244

    Article  CAS  Google Scholar 

  • Martin RE, Gray GR (1971) pH of southern Pine Barks. Forest Prod J 2:3

    Google Scholar 

  • Means JE, MacMillan PC, Cromack K Jr (1992) Biomass and nutrient content of Douglas-fir logs and other detrital pools in an old-growth forest, Oregon, U.S.A. Can J For Res 22:1536–1546

    Article  CAS  Google Scholar 

  • Merrill W, Cowling EB (1965) Effect of variation in nitrogen content of wood on rate of decay. Phytopathology 55:1067–1068

    Google Scholar 

  • Moroni MT, Morris DM, Shaw C, Stokland JN, Harmon ME, Fenton NJ, Merganicová K, Mergani J, Okabe K, Hagemann U (2015) Buried wood: a common yet poorly documented form of deadwood. Ecosystems 18:605–628

    Article  CAS  Google Scholar 

  • Morozova RM (1991) Mineral content of forest plants in Karelia. Petrozavodsk Press, Petrozavodsk (in Russian)

    Google Scholar 

  • Noll L, Leonhardt S, Arnstadt T, Hoppe B, Poll C, Matzner E, Hofrichter M, Kellner H (2016) Fungal biomass and extracellular enzyme activities in coarse woody debris of 13 tree species in the early phase of decomposition. For Ecol Manag 378:181–192

    Article  Google Scholar 

  • O’Connell MM, Bentley MD, Campbell CS, Cole JW (1988) Betulin and lupeol in bark from four white-barked birches. Phytochemistry 27:2175–2176

    Article  Google Scholar 

  • Ódor P, van Hees AFM (2004) Preferences of dead wood inhabiting bryophytes for decay stage, log size and habitat types in Hungarian beech forests. J Bryol 26:79–95

    Article  Google Scholar 

  • Palviainen M, Finér L (2015) Decomposition and nutrient release from Norway spruce coarse roots and stumps: a 40-year chronosequence study. For Ecol Manag 358:1–11

    Article  Google Scholar 

  • Palviainen M, Finér L, Laiho R, Shorohova E, Kapitsa E, Vanha-Majamaa I (2010) Carbon and nitrogen release from decomposing Scots pine, Norway spruce and silver birch stumps. For Ecol Manag 259:390–398

    Article  Google Scholar 

  • Philpott TJ, Prescott CE, Chapman WK, Grayston SJ (2014) Nitrogen translocation and accumulation by a cord-forming fungus (Hypholoma fasciculare) into simulated woody debris. For Ecol Manag 315:121–128

    Article  Google Scholar 

  • Polubojarinov OI (1976) The density of wood Moscow press. Lesnya promyshlennoct, pp 160 (in Russian)

  • Polubojarinov OI, Sorokin AM (1997) Physical characteristics of pine bark and its components. Lesnoj zhurnal 3:70–74 (in Russian)

    Google Scholar 

  • Preston CM, Trofymov JA, Niu J, Fyfe CA (1998) 13CPMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. For Ecol Manag 111:51–68

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Nault JR (2012) Decomposition and change in N and organic composition of small-diameter Douglas-fir woody debris over 23 years. Can J For Res 42:1153–1167

    Article  CAS  Google Scholar 

  • Putna S, Mezaka A (2014) Preferences of epiphytic bryophytes for forest stand and substrate in North-East Latvia. Folia Cryptog Estonia Fasc 51:75–83

    Article  Google Scholar 

  • Richards BN (1987) The microbiology of terrestrial ecosystems. Longman Scientific & Technical, Longman Group, UK Limited, Essex

    Google Scholar 

  • Rinne KT, Rajala T, Peltoniemi K, Chen J, Smolander A, Mäkipää R (2017) Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Funct Ecol 31:530–541

    Article  Google Scholar 

  • Rudneva EN (1983) Forest-vegetative properties of taiga surface-gley soils of bilberry spruce forests. In: Kozlovskaya LS, Morozova RM (eds) Influence of economic measures on forest soils of Karelia. Petrozavodsk press, Petrozavodsk, pp 35–77 (in Russian)

    Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.r-project.org/

  • Santesson R, Moberg R, Nordin A, Tönsberg T, Vitikainen O (2004) Lichenforming and lichenicolous fungi of Fennoscandia. Museum of Evolution, Uppsala University, Uppsala

    Google Scholar 

  • Shaw RG, Mitchell-Olds T (1993) ANOVA for unbalanced data: an overview. Ecology 74(6):1638–1645

    Article  Google Scholar 

  • Shorohova E, Kapitsa E (2014) Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests. For Ecol Manag 315:173–184

    Article  Google Scholar 

  • Shorohova E, Kapitsa E (2016) The decomposition rate of non-stem components of coarse woody debris (CWD) in European boreal forests mainly depends on site moisture and tree species. Eur J For Res 135(3):593–606

    Article  Google Scholar 

  • Shorohova E, Shorohov A (2001) Coarse woody debris dynamics and stores in a boreal virgin spruce forest. Ecol Bull 49:129–137

    Google Scholar 

  • Shorohova E, Kapitsa E, Kazartsev I, Romashkin I, Polevoi A, Kushnevskaya H (2016) Tree species traits are the predominant control on the decomposition rate of tree log bark in a mesic old-growth boreal forest. For Ecol Manag 377:36–45

    Article  Google Scholar 

  • Skonieczna J, Małek S, Polowy K, Węgiel A (2014) Element content of Scots pine (Pinus sylvestris L.) stands of different densities. Drewno 57(192):77–87

    Google Scholar 

  • Skorokhodova SB (2008) The climate of “Kivach” Reserve. Proc Natl Nat Reserve Kivach 4:3–34

    Google Scholar 

  • Sollins P, Grier C, McCorison F, Cromack K Jr, Fogel R, Fredriksen R (1980) The internal element cycles of an old-growth Douglas-fir ecosystem in western Oregon. Ecol Monogr 50(3):261–285

    Article  Google Scholar 

  • Sollins P, Cline SP, Verhoeven T, Sachs D, Spycher G (1987) Patterns of log decay in old-growth Douglas-fir forests. Can J For Res 17:1585–1595

    Article  Google Scholar 

  • Ståhl G, Ringvall A, Fridman J (2001) Assessment of coarse woody debris: a methodological overview. Ecol Bull 49:57–70

    Google Scholar 

  • Stängle SM, Weiskittel AR, Dormann CF, Brüchert F (2016) Measurement and prediction of bark thickness in Picea abies: assessment of accuracy, precision and sample size requirements. Can J For Res 46(1):39–47

    Article  Google Scholar 

  • Staxäng B (1969) Acidification of bark of some deciduous trees. Oïkos 20:224–230

    Google Scholar 

  • Sundberg B, Ericsson A, Little CHA, Näsholm T, Gref R (1993) The relationship between crown size and ring width in Pinus sylvestris L. stems: dependence on indole-3-acetic acid, carbohydrates and nitrogen in the cambial region. Tree Physiol 12:347–362

    Article  PubMed  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley, p 509

    Google Scholar 

  • Táborská M, Přívětivý T, Vrška T, Ódor P (2015) Bryophytes associated with two tree species and different stages of decay in a natural fir-beech mixed forest in the Czech Republic. Preslia 87:387–401

    Google Scholar 

  • Tetioukhin SV, Minayev VN, Bogomolova LP (2004) Forest Mensuration and inventory: reference book for the North Western Russia. FTA Publ, St. Petersburg (in Russian)

    Google Scholar 

  • Vedernikov DN, Shabanova NY, Roshchin VI (2010) Change in the chemical composition of inner and outer bark of Betula pendula Roth. (Betulaceae) depending on tree height. Khimiya rastitel`nogo syr`ya 2: 43–48 (in Russian)

  • Warren JM, Allen HL, Booker FL (1999) Mineral nutrition, resin flow and phloem phytochemistry in loblolly pine. Tree Physiol 19:655–663

    Article  PubMed  CAS  Google Scholar 

  • Woodwell GM, Whittaker RH, Houghton RA (1975) Nutrient concentrations in plants in the Brookhaven oak-pine forest. Ecology 56:318–332

    Article  CAS  Google Scholar 

  • Yatskov M, Harmon ME, Krankina ON (2003) A chronosequence of wood decomposition in the boreal forests of Russia. Can J For Res 33:1211–1226

    Article  Google Scholar 

  • Zaehle S, Dalmonech D (2011) Carbon–nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Curr Opin Env Sust 3:311–320

    Article  Google Scholar 

  • Zhou L, Dai L, Gu H, Zhong L (2007) Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. J For Res 18:48–54

    Article  Google Scholar 

  • Zimmerman JK, Pulliam WM, Lodge DJ (1995) Nitrogen immobilization by decomposing woody debris and the recovery of tropical wet forest from hurricane damage. Oikos 72:314–322

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Russian Science Foundation (15-14-10023). We cordially thank the staff of Strict Nature Reserve “Kivach” for organizing the fieldwork on the territory. Anna Ruokolainen, Anastasia Mamay, Igor Kazartsev, Aleksey Polevoi and Nikita Baklazhenko helped with the sample plot and log selection and sampling. Helena Kushnevskaya provided the data on epixylic vegetation. Ilkka Vanha-Majamaa and two reviewers gave valuable comments on the manuscript. Carla Burton revised the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Shorohova.

Additional information

Communicated by Lluís Coll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romashkin, I., Shorohova, E., Kapitsa, E. et al. Carbon and nitrogen dynamics along the log bark decomposition continuum in a mesic old-growth boreal forest. Eur J Forest Res 137, 643–657 (2018). https://doi.org/10.1007/s10342-018-1131-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-018-1131-2

Keywords

Navigation