Skip to main content
Log in

Reforestation with loblolly pine can restore the initial soil carbon stock relative to a subtropical natural forest after 30 years

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

We hypothesized that long-term loblolly pine (Pinus taeda L.) land-use restores SOC stock and lability of a subtropical Cambisol to the original levels of the natural forest (NF). Additionally, we hypothesized that roots are the major contributor to SOC and that soil stores most of the ecosystem total carbon (ETC). We investigated a chronosequence of loblolly pine land-use of 17 (first rotation) and 32 years (second rotation, unthinned or thinned) following clearing of the NF. The original SOC stock to 100 cm of NF (209 ± 9.4 Mg C ha−1) was depleted by 22% after 17 years of pine, possibly because of intense soil disturbance and low quantity and quality of the residue inputted during the pine stand implementation. However, the SOC stock was restored to the original stock of NF after 32 years of pine, with the input of above and belowground biomass at harvest of the first rotation possibly playing a role in this recovery. Thinning did not affect SOC stocks after 1 year. The POM-C reduced after 17 years and was not recovered after 32 years. We could not ascertain in 5-year evaluation whether root or litter was the major contributor to SOC. Soil held 72% of the ETC in NF and 48–59% in pine plantations, confirming that it stores most of the ETC. Overall, long-term loblolly pine land-use seems to restore the original soil carbon stock in this subtropical site, regardless of some lability losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

SOC:

Soil organic carbon

SOM:

Soil organic matter

ETC:

Ecosystem total carbon

NF:

Natural forest

P17:

Loblolly pine land-use for 17 years

P32:

Loblolly pine land-use for 32 years

P32t:

Loblolly pine land-use for 32 years, thinned

POM-C:

Carbon in the particulate organic matter

MOM-C:

Carbon in the mineral-associated organic matter

CLI:

Carbon lability index

DBH:

Diameter at breast height

References

  • ABNT (2010) NBR 7989: Pasta celulósica e madeira—Determinação de lignina insolúvel em ácido. Rio de Janeiro

  • Balbinot R, Schumacher MV, Watzlawick LF, Sanquetta CR (2003) Inventário do carbono orgânico em um plantio de Pinus taeda aos 5 anos de idade no Rio Grande do Sul. Revista Ciências Exatas e Naturais 5:59–68

    Google Scholar 

  • Baldock JA, Broos K (2012) Soil organic matter. In: Huang PM, Li Y, Sumner ME (eds) Hanbook of soil sciences: properties and processes, 2nd edn. CRC Press, Boca Raton, pp 12.11–12.23

    Google Scholar 

  • Bayer C, Mielniczuk J, Amado TJC, Martin-Neto L, Fernandes SV (2000) Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil. Soil Till Res 54:101–109. https://doi.org/10.1016/s0167-1987(00)00090-8

    Article  Google Scholar 

  • Blair GJ, Lefroy RDB, Lise L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46:1459–1466

    Article  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and minerological methods, 2nd edn. SSSA, Madison, pp 363–382

    Google Scholar 

  • Blanco JA, Imbert JB, Castillo FJ (2006) Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For Ecol Manag 237:342–352. https://doi.org/10.1016/j.foreco.2006.09.057

    Article  Google Scholar 

  • Cambardella CA, Elliott ET (1992) Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783

    Article  Google Scholar 

  • Charro E, Gallardo JF, Moyano A (2010) Degradability of soils under oak and pine in Central Spain. Eur J For Res 129:83–91. https://doi.org/10.1007/s10342-009-0320-4

    Article  CAS  Google Scholar 

  • Diekow J, Mielniczuk J, Knicker H, Bayer C, Dick DP, Kögel-Knabner I (2005) Carbon and nitrogen stocks in physical fractions of a subtropical Acrisol as influenced by long-term no-till cropping systems and N fertilisation. Plant Soil 268:319–328. https://doi.org/10.1007/s11104-004-0330-4

    Article  CAS  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190. https://doi.org/10.1126/science.263.5144.185

    Article  PubMed  CAS  Google Scholar 

  • FAO (2015) Global forest resources assessment 2015: how are the world’s forests changing?. FAO Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fekete I et al (2014) Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest. Soil Biol Biochem 74:106–114. https://doi.org/10.1016/j.soilbio.2014.03.006

    Article  CAS  Google Scholar 

  • Furlani PR, Gallo JR (1978) Determinação de silício em material vegetal, pelo método colorimétrico do “azul-de-molibdênio”. Bragantia 37:5–11. https://doi.org/10.1590/s0006-87051978000100018

    Article  Google Scholar 

  • Garten CT (2009) A disconnect between O horizon and mineral soil carbon—implications for soil C sequestration. Acta Oecol 35:218–226. https://doi.org/10.1016/j.actao.2008.10.004

    Article  Google Scholar 

  • Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils Can J. Soil Sci 74:367–385

    CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • Higa RCV (2005) Dinâmica de carbono de Pinus taeda L. voltadas a exigências climáticas e práticas silviculturais [Relatório de pós-doutorado]. University of Florida, Gainesville

    Google Scholar 

  • Higa RCV et al (2014) Protocolo de medição e estimativa de biomassa e carbono florestal (Documentos, 266). Embrapa Florestas, Colombo

    Google Scholar 

  • IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds). IGES, Japan

  • IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

  • Johnson DW (1992) Effects of forest management on soil carbon storage. Water Air Soil Pollut 64:83–120. https://doi.org/10.1007/bf00477097

    Article  CAS  Google Scholar 

  • Johnston MH, Homann PS, Engstrom JK, Grigal DF (1996) Changes in ecosystem carbon storage over 40 years on an old-field forest landscape in east-central Minnesota. For Ecol Manag 83:17–26. https://doi.org/10.1016/0378-1127(96)03704-8

    Article  Google Scholar 

  • Kasel S, Bennett LT (2007) Land-use history, forest conversion, and soil organic carbon in pine plantations and native forests of south eastern Australia. Geoderma 137:401–413. https://doi.org/10.1016/j.geoderma.2006.09.002

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22. https://doi.org/10.1016/j.geoderma.2004.01.032

    Article  CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258. https://doi.org/10.1016/j.foreco.2005.08.015

    Article  Google Scholar 

  • Liao CZ, Luo YQ, Fang CM, Chen JK, Li B (2012) The effects of plantation practice on soil properties based on the comparison between natural and planted forests: a meta-analysis. Glob Ecol Biogeogr 21:318–327. https://doi.org/10.1111/j.1466-8238.2011.00690.x

    Article  Google Scholar 

  • Loaiza-Usuga JC, Leon-Pelaez JD, Gonzalez-Hernandez MI, Gallardo-Lancho JF, Osorio-Vega W, Correa-Londono G (2013) Alterations in litter decomposition patterns in tropical montane forests of Colombia: a comparison of oak forests and coniferous plantations. Canad J For Res Revue Canadienne De Recherche Forestiere 43:528–533. https://doi.org/10.1139/cjfr-2012-0438

    Article  CAS  Google Scholar 

  • Mafra ÁL, Guedes SdFF, Klauberg Filho O, Santos JCP, Almeida JAd, Rosa JD (2008) Carbono orgânico e atributos químicos do solo em áreas florestais. Revista Árvore 32:217–224

    Article  CAS  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root : shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96. https://doi.org/10.1111/j.1365-2486.2005.001043.x

    Article  Google Scholar 

  • Nadelhoffer K et al (2004) The DIRT experiment: litter and root influences on forest organic matter stocks and function. In: Foster DR, Aber JD (eds) Forests in time: the environmental consequences of 1000 years of change in New England. Yale University Press, New Haven, pp 300–315

    Google Scholar 

  • Neufeldt H, Resck DVS, Ayarza MA (2002) Texture and land-use effects on soil organic matter in Cerrado Oxisols, Central Brazil. Geoderma 107:151–164

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and balance of producers and decomposers in ecological systems. Ecology 44:322–331. https://doi.org/10.2307/1932179

    Article  Google Scholar 

  • Park JH, Matzner E (2003) Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry 66:265–286. https://doi.org/10.1023/B:BIOG.0000005341.19412.7b

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. https://doi.org/10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Ratuchne LC (2010) Equações alométricas para a estimativa de biomassa, carbono e nutrientes em uma Floresta Ombrófila. Universidade Estadual do Centro-Oeste do Paraná

  • Rodrigues ANA (2016) Formas de alumínio em solos cultivados com Pinus taeda L. nos estados do Paraná e Santa Catarina. Tese de Doutorado, Unviersidade Federal do Paraná

  • Sá JCdM et al (2018) Soil carbon fractions and biological activity based indices can be used to study the impact of land management and ecological successions. Ecol Indic 84:96–105. https://doi.org/10.1016/j.ecolind.2017.08.029

    Article  CAS  Google Scholar 

  • Schultz RP (1999) Loblolly—the pine for the twenty-first century. New For 17:71–88. https://doi.org/10.1023/a:1006533212151

    Article  Google Scholar 

  • Sisti CPJ, Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Till Res 76:39–58. https://doi.org/10.1016/j.still.2003.08.007

    Article  Google Scholar 

  • Smith P et al (2014) Agriculture, forestry and other land use (AFOLU). In: Edenhofer O et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Soane BD (1990) The role of organic-matter in soil compactibility—a review of some practical aspects. Soil Till Res 16:179–201. https://doi.org/10.1016/0167-1987(90)90029-D

    Article  Google Scholar 

  • Thomé VMR et al (1999) Zoneamento Agroecológico e Socioeconômico de Santa Catarina vol CD-ROOM. Epagri, Florianópolis

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

    Article  CAS  Google Scholar 

  • Turner J, Lambert M (2000) Change in organic carbon in forest plantation soils in eastern Australia. For Ecol Manag 133:231–247. https://doi.org/10.1016/s0378-1127(99)00236-4

    Article  Google Scholar 

  • Vieira FCB, Bayer C, Zanatta JA, Dieckow J, Mielniczuk J, He ZL (2007) Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. Soil Till Res 96:195–204. https://doi.org/10.1016/j.still.2007.06.007

    Article  Google Scholar 

  • Watzlawick LF, Kirchner FF, Sanquetta CR, Schumacher MVO (2002) Papel do sensoriamento remoto nos estudos de carbono. In: Sanquetta CR, Balbinot R, Ziliotto MAB (eds) As Florestas e o Carbono. Curitiba, pp 215–235

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946. https://doi.org/10.2136/sssaj2002.1930

    Article  CAS  Google Scholar 

  • Zabowski D, Chambreau D, Rotramel N, Thies WG (2008) Long-term effects of stump removal to control root rot on forest soil bulk density, soil carbon and nitrogen content. For Ecol Manag 255:720–727. https://doi.org/10.1016/j.foreco.2007.09.046

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the financial supported provided by Saltus Project (Macroprograma 1 Grandes Desafios Nacionais—Embrapa) and CNPq (Brazilian Scientific Council). Scholarships were sponsored by Capes (Brazilian Ministry of Education) and CNPq. We appreciate the contribution of Modo Battistella Reflorestamento, for providing access to the forest stands, and also the contribution of field and laboratory staff of Embrapa and UFPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeferson Dieckow.

Additional information

Communicated by Agustín Merino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veloso, M.G., Dieckow, J., Zanatta, J.A. et al. Reforestation with loblolly pine can restore the initial soil carbon stock relative to a subtropical natural forest after 30 years. Eur J Forest Res 137, 593–604 (2018). https://doi.org/10.1007/s10342-018-1127-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-018-1127-y

Keywords