Skip to main content

Advertisement

Log in

Area-level analysis of forest inventory variables

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Small-area estimation is a subject area of growing importance in forest inventories. Modelling the link between a study variable Y and auxiliary variables X—in pursuit of an improved accuracy in estimators—is typically done at the level of a sampling unit. However, for various reasons, it may only be possible to formulate a linking model at the level of an area of interest (AOI). Area-level models and their potential have rarely been explored in forestry. This study demonstrates, with data (Y = stem volume per ha) from four actual inventories aided by aerial laser scanner data (3 cases) or photogrammetric point clouds (1 case), application of three distinct models representing the currency of area-level modelling. The studied AOIs varied in size from forest management units to forest districts, and municipalities. The variance explained by X declined sharply with the average size of an AOI. In comparison with a direct estimate mean of Y in an AOI, all three models achieved practically important reduction in the relative root-mean-squared error of an AOI mean. In terms of the reduction in mean-squared errors, a model with a spatial location effect was overall most attractive. We recommend the pursuit of a spatial model component in area-level modelling as promising within the context of a forest inventory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babcock C, Finley AO, Bradford JB, Kolka R, Birdsey R, Ryan MG (2015) LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients. Remote Sens Environ 169:113–127

    Article  Google Scholar 

  • Bechtold WA, Patterson PL (2005) The enhanced forest inventory and analysis program—National sampling design and estimation procedures. General Technical Report, General Technical Report. Asheville, NC

  • Boubeta M, Lombardía MJ, Marey-Pérez MF, Morales D (2015) Prediction of forest fires occurrences with area-level Poisson mixed models. J Environ Manage 154:151–158

    Article  PubMed  Google Scholar 

  • Box GE (1953) Non-normality and tests on variances. Biometrika 40:318–335

    Article  Google Scholar 

  • Breidenbach J, Astrup R (2012) Small area estimation of forest attributes in the Norwegian National Forest Inventory. Eur J For Res 131:1255–1267. doi:10.1007/s10342-012-0596-7

    Article  Google Scholar 

  • Breidenbach J, McRoberts RE, Astrup R (2015) Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume. Remote Sens Environ 173:274–281. doi:10.1016/j.rse.2015.07.026

    Article  Google Scholar 

  • Breidt FJ (2004) Small area estimation for natural resource surveys. In: Monitoring science & technology symposium, Denver, CO

  • Brosofske KD, Froese RE, Falkowski MJ, Banskota A (2014) A review of methods for mapping and prediction of inventory attributes for operational forest management. For Sci 60:733–756. doi:10.5849/forsci.12-134

    Google Scholar 

  • Burk TE, Ek AR (1982) Application of empirical Bayes/James-Stein procedures to simultaneous estimation problems in forest inventory. For Sci 28:753–771

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, p 488

    Google Scholar 

  • Carroll RJ, Ruppert D, Stefanski LA (1995) Measurement error in nonlinear models. Chapman & Hall, London, p 305

    Book  Google Scholar 

  • Chambers RL, Clark RG (2012) An introduction to model-based survey sampling with applications, vol 37. Oxford Statistical Science series. Oxford University Press, New York, p 265

    Book  Google Scholar 

  • Chandra H, Salvati N, Chambers R (2007) Small area estimation for spatially correlated populations—a comparison of direct and indirect model-based methods. M07/09, M07/09. http://eprints.soton.ac.uk/45874/

  • Chandra H, Salvati N, Chambers R, Tzavidis N (2012) Small area estimation under spatial nonstationarity. Comp Stat Data Anal 56:2875–2888. doi:10.1016/j.csda.2012.02.006

    Article  Google Scholar 

  • Chandra H, Sud U, Gupta V (2013) Small area estimation under area level model using R software

  • Chandra H, Salvati N, Chambers R (2015) A spatially nonstationary Fay–Herriot model for small area estimation. J Surv Stat Methodol 3:109–135. doi:10.1093/jssam/smu026

    Article  Google Scholar 

  • Claeskens G, Hjort NL (2008) Model selection and model averaging. Cambridge University Press, Cambridge, p 332

    Book  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Revised edition, 2nd edn. Wiley, New York, p 900

    Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken, p 588

    Google Scholar 

  • Datta GS, Mandal A (2015) Small area estimation with uncertain random effects. J Am Stat Assoc 110:1735–1744. doi:10.1080/01621459.2015.1016526

    Article  CAS  Google Scholar 

  • Datta GS, Rao JNK, Smith DD (2005) On measuring the variability of small area estimators under a basic area level model. Biometrika 92:183–196

    Article  Google Scholar 

  • Datta GS, Hall P, Mandal A (2011) Model selection by testing for the presence of small-area effects, and application to area-level data. J Am Stat Assoc 106:362–374. doi:10.1198/jasa.2011.tm10036

    Article  CAS  Google Scholar 

  • Donner A, Eliasziw M (1987) Sample size requirements for reliability studies. Stat Med 6:441–448

    Article  CAS  PubMed  Google Scholar 

  • Fay RE, Herriot RA (1979) Estimates of income for small places. An application of James-Stein procedure to census data. J Am Stat Assoc 74

  • Finley AO, Banerjee S, Ek AR, McRoberts RE (2008) Bayesian multivariate process modeling for prediction of forest attributes. J Agric Biol Environ Stat 13:60–83. doi:10.1198/108571108x273160

    Article  Google Scholar 

  • Finley AO, Banerjee S, MacFarlane DW (2011) A hierarchical model for quantifying forest variables over large heterogeneous landscapes with uncertain forest areas. J Am Stat Assoc 106:31–48. doi:10.1198/jasa.2011.ap09653

    Article  CAS  PubMed  Google Scholar 

  • Flewelling JW, Thomas CE (1984) An improved estimator for merchantable basal area growth based on point samples. For Sci 30:813–821

    Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2003) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester, p 282

    Google Scholar 

  • Freeman E, Moisen G (2007) Evaluating Kriging as a tool to improve moderate resolution maps of forest biomass. Env Monit Assess 128:395–410

    Article  Google Scholar 

  • Goerndt ME, Monleon VJ, Temesgen H (2011) A comparison of small-area estimation techniques to estimate selected stand attributes using LiDAR-derived auxiliary variables. Can J For Res 41:1189–1201. doi:10.1139/x11-033

    Article  Google Scholar 

  • Goerndt ME, Monleon VJ, Temesgen H (2013) Small-area estimation of county-level forest attributes using ground data and remote sensed auxiliary information. For Sci 59:536–548. doi:10.5849/forsci.12-073

    Google Scholar 

  • González-Manteiga W, Lombardía MJ, Molina I, Morales D, Santamaría L (2007) Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model. Comput Stat Data Anal 51:2720–2733. doi:10.1016/j.csda.2006.01.012

    Article  Google Scholar 

  • Gregoire TG (1998) Design-based and model-based inference in survey sampling: appreciating the difference. Can J For Res 28:1429–1447

    Article  Google Scholar 

  • Gregoire T, Ringvall A, Ståhl G, Næsset E (2015) Conditioning post-stratified inference following two-stage, equal-probability sampling. Environ Ecol Stat. doi:10.1007/s10651-015-0332-9

    Google Scholar 

  • Gregoire TG et al (2016) Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sens Environ 173:98–108. doi:10.1016/j.rse.2015.11.012

    Article  Google Scholar 

  • Haara A, Leskinen P (2009) The assessment of the uncertainty of updated stand-level inventory data. Silv Fenn 43:87–112

    Google Scholar 

  • Holmgren J (2004) Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scand J For Res 19:543–553

    Article  Google Scholar 

  • Johannesson G, Cressie N, Huang HC (2007) Dynamic multi-resolution spatial models. Ecol Env Stat 14:5–25

    Article  CAS  Google Scholar 

  • Kangas A, Maltamo M (2006) Forest inventory: methodology and applications, vol 10. Springer, Dordrecht, p 362

    Book  Google Scholar 

  • Kaufmann E (1999) Vorrat, Zuwachs, Nutzung. In: Brassel P, Lischke H (eds) Schweiyerisches Landesforstinventar—Methoden und Modelle der Zweitaufnahme 1993–1995. Eidgenössissche Forschungsanstalt Wald Schnee Landschaft, Birmensdorf, pp 162–196

    Google Scholar 

  • Köhl M, Magnussen S (2014) Sampling in forest inventories. In: Köhl M, Pancel L (eds) Tropical forestry handbook, 2nd edn. Springer, Berlin, pp 1–50. doi:10.1007/978-3-642-41554-8_72-1

    Google Scholar 

  • Köhl M, Magnussen S, Marchetti M (2006) Sampling methods, remote sensing and GIS multiresource forest inventory. Springer, Berlin, p 374

    Book  Google Scholar 

  • Koistinen P, Holmström L, Tomppo E (2008) Smoothing methodology for predicting regional averages in multi-source forest inventory. Remote Sens Environ 112:862–871

    Article  Google Scholar 

  • Kublin E, Breidenbach J, Kändler G (2013) A flexible stem taper and volume prediction method based on mixed-effects B-spline regression. Eur J For Res 132:983–997

    Article  Google Scholar 

  • Lehtonen R, Veijanen A (2009) Design-based methods of estimation for domains and small areas. In: Rao CR (ed) Handbook of statistics, vol 29, Part B. Elsevier, pp 219–249. doi:http://dx.doi.org/10.1016/S0169-7161(09)00231-4

  • Lin L, Hedayat AS, Sinha B, Yang M (2002) Statistical methods in assessing agreement: models, issues and tools. J Am Stat Assoc 97:257–270

    Article  Google Scholar 

  • Magnussen S (2015) Arguments for a model based inference? Forest Oxf 88:317–325. doi:10.1093/forestry/cpv002

    Article  Google Scholar 

  • Magnussen S, Boudewyn P (1998) Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Can J For Res 28:1016–1031

    Article  Google Scholar 

  • Magnussen S, Mandallaz D, Breidenbach J, Lanz A, Ginzler C (2014) National forest inventories in the service of small area estimation of stem volume. Can J For Res 44:1079–1090. doi:10.1139/cjfr-2013-0448

    Article  Google Scholar 

  • Magnussen S, Næsset E, Kändler G, Adler P, Renaud JP, Gobakken T (2016) A functional regression model for inventories supported by aerial laser scanner data or photogrammetric point clouds. Remote Sens Environ 184:496–505. doi:10.1016/j.rse.2016.07.035

    Article  Google Scholar 

  • Mandallaz D (2013) Design-based properties of some small-area estimators in forest inventory with two-phase sampling. Can J For Res 43:441–449. doi:10.1139/cjfr-2012-0381

    Article  Google Scholar 

  • Mandallaz D, Breschan J, Hill A (2013) New regression estimators in forest inventories with two-phase sampling and partially exhaustive information: a design-based Monte Carlo approach with applications to small-area estimation. Can J For Res 43:1023–1031. doi:10.1139/cjfr-2013-0181

    Article  Google Scholar 

  • Marhuenda Y, Molina I, Morales D (2013) Small area estimation with spatio-temporal Fay-Herriot models. Comput Stat Data Anal 58:308–325

    Article  Google Scholar 

  • Massey A, Mandallaz D (2015) Comparison of classical, kernel-based, and nearest neighbours regression estimators using the design-based Monte Carlo approach for two-phase forest inventories. Can J For Res 45:1480–1488

    Article  Google Scholar 

  • Mauro F, Molina I, García-Abril A, Valbuena R, Ayuga-Téllez E (2016) Remote sensing estimates and measures of uncertainty for forest variables at different aggregation levels. Environmetrics 27:225–238. doi:10.1002/env.2387

    Article  Google Scholar 

  • McRoberts RE (2010) Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data. Remote Sens Environ 114:1017–1025. doi:10.1016/j.rse.2009.12.013

    Article  Google Scholar 

  • McRoberts RE (2011) Estimating forest attribute parameters for small areas using nearest neighbours techniques. For Ecol Manage 272:3–12. doi:10.1016/j.foreco.2011.06.039

    Article  Google Scholar 

  • McRoberts RE, Tomppo EO (2007) Remote sensing support for national forest inventories. Remote Sens Environ 110:412–419

    Article  Google Scholar 

  • Melville G, Stone C, Turner R (2015) Application of LiDAR data to maximise the efficiency of inventory plots in softwood plantations. NZ J For Sci 45:9

    Article  Google Scholar 

  • Meng Q, Cieszewski C, Madden M (2009) Large area forest inventory using Landsat ETM+: a geostatistical approach. ISPRS J Photogramm Remote Sens 64:27–36

    Article  Google Scholar 

  • Molina I, Salvati N, Pratesi M (2009) Bootstrap for estimating the MSE of the spatial EBLUP. Comput Statist 24:441–458

    Article  Google Scholar 

  • Montes F, Hernández MJ, Cañellas I (2005) A geostatistical approach to cork production sampling estimation in Quercus suber forests. Can J For Res 35:2787–2796. doi:10.1139/x05-197

    Article  Google Scholar 

  • Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99

    Article  Google Scholar 

  • Namazi-Rad MR, Steel D (2015) What level of statistical model should we use in small area estimation? Aust N Z J Stat 57:275–298

    Article  Google Scholar 

  • Ohmann JL, Gregory MJ, Roberts HM (2014) Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping. Remote Sens Environ 151:3–15

    Article  Google Scholar 

  • Opsomer JD, Breidt FJ, Moisen GG, Kauermann G (2007) Model-assisted estimation of forest resources with generalized additive models. J Am Stat Assoc 102:400–409

    Article  CAS  Google Scholar 

  • Opsomer JD, Claeskens G, Ranalli MG, Kauermann G, Breidt F (2008) Non-parametric small area estimation using penalized spline regression. J R Stat Soc Serires B 70:265–286

    Article  Google Scholar 

  • Pereira LN, Coelho PS (2012) Small area estimation using a spatio-temporal linear mixed model. REVSTAT-Statist J 10:285–308

    Google Scholar 

  • Petrucci A, Pratesi M, Salvati N (2005) Geographic information in small area estimation: small area models and spatially correlated random area effects. Stat Transit 7:609–623

    Google Scholar 

  • Pfeffermann D (2002) Small area estimation—new developments and directions. Int Stat Rev 70:125–143

    Google Scholar 

  • Pfeffermann D (2013) New important developments in small area estimation. Stat Sci 28:40–68

    Article  Google Scholar 

  • Pratesi M, Salvati N (2008) Small area estimation: the EBLUP estimator based on spatially correlated random area effects. Stat Methods Appl 17:113–141. doi:10.1007/s10260-007-0061-9

    Article  Google Scholar 

  • Quick H, Banerjee S, Carlin BP (2015) Bayesian modeling and analysis for gradients in spatiotemporal processes. Biometrics 71:575–584. doi:10.1111/biom.12305

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai P, Pandey K (2013) Synthetic estimators using auxiliary information in small domains. Stat Transit 14:31–44

    Google Scholar 

  • Rao JNK (2005) Inferential issues in small area estimation: some new developments. Stat Transit 7:513–526

    Google Scholar 

  • Rao JN, Molina I (2015) Small area estimation, 2nd edn. Wiley, Hobroken, p 480

    Book  Google Scholar 

  • Rao JNK, Yu M (1994) Small-area estimation by combining time-series and cross-sectional data. Can J Stat 22:511–528. doi:10.2307/3315407

    Article  Google Scholar 

  • Robert CP, Casella G (1999) Monte Carlo statistical methods. Springer texts in statistics. Springer, New York, p 507

    Book  Google Scholar 

  • Salas C, Ene L, Gregoire TG, Næsset E, Gobakken T (2010) Modelling tree diameter from airborne laser scanning derived variables: a comparison of spatial statistical models. Remote Sens Environ 114:1277–1285

    Article  Google Scholar 

  • Salvati N, Tzavidis N, Pratesi M, Chambers R (2012) Small area estimation via M-quantile geographically weighted regression. TEST 21:1–28. doi:10.1007/s11749-010-0231-1

    Article  Google Scholar 

  • Särndal CE, Swensson B, Wretman J (1992) Model assisted survey sampling. Springer Series in Statistics. Springer, New York, p 694

    Book  Google Scholar 

  • Ståhl G et al (2016) Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation. For Ecosyst 3:5

    Article  Google Scholar 

  • Tomppo E (2006) The Finnish multi-source national forest inventory—small area estimation and map production. In: Kangas A, Maltamo M (eds) Forest inventory—methodology and applications Managing Forest Ecosystems, vol 10. Springer, Dordrecht, pp 195–224

    Google Scholar 

  • Wang J, Fuller WA (2003) The mean squared error of small area predictors constructed with estimated area variances. J Am Stat Assoc 98:716–723

    Article  Google Scholar 

  • Wanjoya A, Torelli N, Datta G (2012) Small area estimation: an application of a flexible Fay-Herriot method. J Agric Sci Tech 14:76–86

    Google Scholar 

  • Wolfram S (2016) The Mathematica Documentation Center (Version 11.1). Wolfram Research, Champaign, IL

  • Wolter KM (2007) Introduction to variance estimation. Statistics for social and behavioral sciences, 2nd edn. Springer, New York, p 447

    Google Scholar 

Download references

Acknowledgements

Francisco Mauro was supported by Oregon State University. Field data from Burgos was collected by TRAGSA S.L., and the LiDAR data for this area was provided by the regional Government of Castilla and Leon, Servicio Territorial de Medio Ambiente de Burgos, Junta de Castilla y Leon. Parts of this study were supported by the Horizon 2020 project DIABOLO (Grant Agreement No. 633464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen Magnussen.

Additional information

Communicated by Arne Nothdurft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnussen, S., Mauro, F., Breidenbach, J. et al. Area-level analysis of forest inventory variables. Eur J Forest Res 136, 839–855 (2017). https://doi.org/10.1007/s10342-017-1074-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-017-1074-z

Keywords

Navigation