Abstract
Small-area estimation is a subject area of growing importance in forest inventories. Modelling the link between a study variable Y and auxiliary variables X—in pursuit of an improved accuracy in estimators—is typically done at the level of a sampling unit. However, for various reasons, it may only be possible to formulate a linking model at the level of an area of interest (AOI). Area-level models and their potential have rarely been explored in forestry. This study demonstrates, with data (Y = stem volume per ha) from four actual inventories aided by aerial laser scanner data (3 cases) or photogrammetric point clouds (1 case), application of three distinct models representing the currency of area-level modelling. The studied AOIs varied in size from forest management units to forest districts, and municipalities. The variance explained by X declined sharply with the average size of an AOI. In comparison with a direct estimate mean of Y in an AOI, all three models achieved practically important reduction in the relative root-mean-squared error of an AOI mean. In terms of the reduction in mean-squared errors, a model with a spatial location effect was overall most attractive. We recommend the pursuit of a spatial model component in area-level modelling as promising within the context of a forest inventory.
Similar content being viewed by others
References
Babcock C, Finley AO, Bradford JB, Kolka R, Birdsey R, Ryan MG (2015) LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients. Remote Sens Environ 169:113–127
Bechtold WA, Patterson PL (2005) The enhanced forest inventory and analysis program—National sampling design and estimation procedures. General Technical Report, General Technical Report. Asheville, NC
Boubeta M, Lombardía MJ, Marey-Pérez MF, Morales D (2015) Prediction of forest fires occurrences with area-level Poisson mixed models. J Environ Manage 154:151–158
Box GE (1953) Non-normality and tests on variances. Biometrika 40:318–335
Breidenbach J, Astrup R (2012) Small area estimation of forest attributes in the Norwegian National Forest Inventory. Eur J For Res 131:1255–1267. doi:10.1007/s10342-012-0596-7
Breidenbach J, McRoberts RE, Astrup R (2015) Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume. Remote Sens Environ 173:274–281. doi:10.1016/j.rse.2015.07.026
Breidt FJ (2004) Small area estimation for natural resource surveys. In: Monitoring science & technology symposium, Denver, CO
Brosofske KD, Froese RE, Falkowski MJ, Banskota A (2014) A review of methods for mapping and prediction of inventory attributes for operational forest management. For Sci 60:733–756. doi:10.5849/forsci.12-134
Burk TE, Ek AR (1982) Application of empirical Bayes/James-Stein procedures to simultaneous estimation problems in forest inventory. For Sci 28:753–771
Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, p 488
Carroll RJ, Ruppert D, Stefanski LA (1995) Measurement error in nonlinear models. Chapman & Hall, London, p 305
Chambers RL, Clark RG (2012) An introduction to model-based survey sampling with applications, vol 37. Oxford Statistical Science series. Oxford University Press, New York, p 265
Chandra H, Salvati N, Chambers R (2007) Small area estimation for spatially correlated populations—a comparison of direct and indirect model-based methods. M07/09, M07/09. http://eprints.soton.ac.uk/45874/
Chandra H, Salvati N, Chambers R, Tzavidis N (2012) Small area estimation under spatial nonstationarity. Comp Stat Data Anal 56:2875–2888. doi:10.1016/j.csda.2012.02.006
Chandra H, Sud U, Gupta V (2013) Small area estimation under area level model using R software
Chandra H, Salvati N, Chambers R (2015) A spatially nonstationary Fay–Herriot model for small area estimation. J Surv Stat Methodol 3:109–135. doi:10.1093/jssam/smu026
Claeskens G, Hjort NL (2008) Model selection and model averaging. Cambridge University Press, Cambridge, p 332
Cressie NAC (1993) Statistics for spatial data. Revised edition, 2nd edn. Wiley, New York, p 900
Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken, p 588
Datta GS, Mandal A (2015) Small area estimation with uncertain random effects. J Am Stat Assoc 110:1735–1744. doi:10.1080/01621459.2015.1016526
Datta GS, Rao JNK, Smith DD (2005) On measuring the variability of small area estimators under a basic area level model. Biometrika 92:183–196
Datta GS, Hall P, Mandal A (2011) Model selection by testing for the presence of small-area effects, and application to area-level data. J Am Stat Assoc 106:362–374. doi:10.1198/jasa.2011.tm10036
Donner A, Eliasziw M (1987) Sample size requirements for reliability studies. Stat Med 6:441–448
Fay RE, Herriot RA (1979) Estimates of income for small places. An application of James-Stein procedure to census data. J Am Stat Assoc 74
Finley AO, Banerjee S, Ek AR, McRoberts RE (2008) Bayesian multivariate process modeling for prediction of forest attributes. J Agric Biol Environ Stat 13:60–83. doi:10.1198/108571108x273160
Finley AO, Banerjee S, MacFarlane DW (2011) A hierarchical model for quantifying forest variables over large heterogeneous landscapes with uncertain forest areas. J Am Stat Assoc 106:31–48. doi:10.1198/jasa.2011.ap09653
Flewelling JW, Thomas CE (1984) An improved estimator for merchantable basal area growth based on point samples. For Sci 30:813–821
Fotheringham AS, Brunsdon C, Charlton M (2003) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester, p 282
Freeman E, Moisen G (2007) Evaluating Kriging as a tool to improve moderate resolution maps of forest biomass. Env Monit Assess 128:395–410
Goerndt ME, Monleon VJ, Temesgen H (2011) A comparison of small-area estimation techniques to estimate selected stand attributes using LiDAR-derived auxiliary variables. Can J For Res 41:1189–1201. doi:10.1139/x11-033
Goerndt ME, Monleon VJ, Temesgen H (2013) Small-area estimation of county-level forest attributes using ground data and remote sensed auxiliary information. For Sci 59:536–548. doi:10.5849/forsci.12-073
González-Manteiga W, Lombardía MJ, Molina I, Morales D, Santamaría L (2007) Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model. Comput Stat Data Anal 51:2720–2733. doi:10.1016/j.csda.2006.01.012
Gregoire TG (1998) Design-based and model-based inference in survey sampling: appreciating the difference. Can J For Res 28:1429–1447
Gregoire T, Ringvall A, Ståhl G, Næsset E (2015) Conditioning post-stratified inference following two-stage, equal-probability sampling. Environ Ecol Stat. doi:10.1007/s10651-015-0332-9
Gregoire TG et al (2016) Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sens Environ 173:98–108. doi:10.1016/j.rse.2015.11.012
Haara A, Leskinen P (2009) The assessment of the uncertainty of updated stand-level inventory data. Silv Fenn 43:87–112
Holmgren J (2004) Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scand J For Res 19:543–553
Johannesson G, Cressie N, Huang HC (2007) Dynamic multi-resolution spatial models. Ecol Env Stat 14:5–25
Kangas A, Maltamo M (2006) Forest inventory: methodology and applications, vol 10. Springer, Dordrecht, p 362
Kaufmann E (1999) Vorrat, Zuwachs, Nutzung. In: Brassel P, Lischke H (eds) Schweiyerisches Landesforstinventar—Methoden und Modelle der Zweitaufnahme 1993–1995. Eidgenössissche Forschungsanstalt Wald Schnee Landschaft, Birmensdorf, pp 162–196
Köhl M, Magnussen S (2014) Sampling in forest inventories. In: Köhl M, Pancel L (eds) Tropical forestry handbook, 2nd edn. Springer, Berlin, pp 1–50. doi:10.1007/978-3-642-41554-8_72-1
Köhl M, Magnussen S, Marchetti M (2006) Sampling methods, remote sensing and GIS multiresource forest inventory. Springer, Berlin, p 374
Koistinen P, Holmström L, Tomppo E (2008) Smoothing methodology for predicting regional averages in multi-source forest inventory. Remote Sens Environ 112:862–871
Kublin E, Breidenbach J, Kändler G (2013) A flexible stem taper and volume prediction method based on mixed-effects B-spline regression. Eur J For Res 132:983–997
Lehtonen R, Veijanen A (2009) Design-based methods of estimation for domains and small areas. In: Rao CR (ed) Handbook of statistics, vol 29, Part B. Elsevier, pp 219–249. doi:http://dx.doi.org/10.1016/S0169-7161(09)00231-4
Lin L, Hedayat AS, Sinha B, Yang M (2002) Statistical methods in assessing agreement: models, issues and tools. J Am Stat Assoc 97:257–270
Magnussen S (2015) Arguments for a model based inference? Forest Oxf 88:317–325. doi:10.1093/forestry/cpv002
Magnussen S, Boudewyn P (1998) Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Can J For Res 28:1016–1031
Magnussen S, Mandallaz D, Breidenbach J, Lanz A, Ginzler C (2014) National forest inventories in the service of small area estimation of stem volume. Can J For Res 44:1079–1090. doi:10.1139/cjfr-2013-0448
Magnussen S, Næsset E, Kändler G, Adler P, Renaud JP, Gobakken T (2016) A functional regression model for inventories supported by aerial laser scanner data or photogrammetric point clouds. Remote Sens Environ 184:496–505. doi:10.1016/j.rse.2016.07.035
Mandallaz D (2013) Design-based properties of some small-area estimators in forest inventory with two-phase sampling. Can J For Res 43:441–449. doi:10.1139/cjfr-2012-0381
Mandallaz D, Breschan J, Hill A (2013) New regression estimators in forest inventories with two-phase sampling and partially exhaustive information: a design-based Monte Carlo approach with applications to small-area estimation. Can J For Res 43:1023–1031. doi:10.1139/cjfr-2013-0181
Marhuenda Y, Molina I, Morales D (2013) Small area estimation with spatio-temporal Fay-Herriot models. Comput Stat Data Anal 58:308–325
Massey A, Mandallaz D (2015) Comparison of classical, kernel-based, and nearest neighbours regression estimators using the design-based Monte Carlo approach for two-phase forest inventories. Can J For Res 45:1480–1488
Mauro F, Molina I, García-Abril A, Valbuena R, Ayuga-Téllez E (2016) Remote sensing estimates and measures of uncertainty for forest variables at different aggregation levels. Environmetrics 27:225–238. doi:10.1002/env.2387
McRoberts RE (2010) Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data. Remote Sens Environ 114:1017–1025. doi:10.1016/j.rse.2009.12.013
McRoberts RE (2011) Estimating forest attribute parameters for small areas using nearest neighbours techniques. For Ecol Manage 272:3–12. doi:10.1016/j.foreco.2011.06.039
McRoberts RE, Tomppo EO (2007) Remote sensing support for national forest inventories. Remote Sens Environ 110:412–419
Melville G, Stone C, Turner R (2015) Application of LiDAR data to maximise the efficiency of inventory plots in softwood plantations. NZ J For Sci 45:9
Meng Q, Cieszewski C, Madden M (2009) Large area forest inventory using Landsat ETM+: a geostatistical approach. ISPRS J Photogramm Remote Sens 64:27–36
Molina I, Salvati N, Pratesi M (2009) Bootstrap for estimating the MSE of the spatial EBLUP. Comput Statist 24:441–458
Montes F, Hernández MJ, Cañellas I (2005) A geostatistical approach to cork production sampling estimation in Quercus suber forests. Can J For Res 35:2787–2796. doi:10.1139/x05-197
Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99
Namazi-Rad MR, Steel D (2015) What level of statistical model should we use in small area estimation? Aust N Z J Stat 57:275–298
Ohmann JL, Gregory MJ, Roberts HM (2014) Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping. Remote Sens Environ 151:3–15
Opsomer JD, Breidt FJ, Moisen GG, Kauermann G (2007) Model-assisted estimation of forest resources with generalized additive models. J Am Stat Assoc 102:400–409
Opsomer JD, Claeskens G, Ranalli MG, Kauermann G, Breidt F (2008) Non-parametric small area estimation using penalized spline regression. J R Stat Soc Serires B 70:265–286
Pereira LN, Coelho PS (2012) Small area estimation using a spatio-temporal linear mixed model. REVSTAT-Statist J 10:285–308
Petrucci A, Pratesi M, Salvati N (2005) Geographic information in small area estimation: small area models and spatially correlated random area effects. Stat Transit 7:609–623
Pfeffermann D (2002) Small area estimation—new developments and directions. Int Stat Rev 70:125–143
Pfeffermann D (2013) New important developments in small area estimation. Stat Sci 28:40–68
Pratesi M, Salvati N (2008) Small area estimation: the EBLUP estimator based on spatially correlated random area effects. Stat Methods Appl 17:113–141. doi:10.1007/s10260-007-0061-9
Quick H, Banerjee S, Carlin BP (2015) Bayesian modeling and analysis for gradients in spatiotemporal processes. Biometrics 71:575–584. doi:10.1111/biom.12305
Rai P, Pandey K (2013) Synthetic estimators using auxiliary information in small domains. Stat Transit 14:31–44
Rao JNK (2005) Inferential issues in small area estimation: some new developments. Stat Transit 7:513–526
Rao JN, Molina I (2015) Small area estimation, 2nd edn. Wiley, Hobroken, p 480
Rao JNK, Yu M (1994) Small-area estimation by combining time-series and cross-sectional data. Can J Stat 22:511–528. doi:10.2307/3315407
Robert CP, Casella G (1999) Monte Carlo statistical methods. Springer texts in statistics. Springer, New York, p 507
Salas C, Ene L, Gregoire TG, Næsset E, Gobakken T (2010) Modelling tree diameter from airborne laser scanning derived variables: a comparison of spatial statistical models. Remote Sens Environ 114:1277–1285
Salvati N, Tzavidis N, Pratesi M, Chambers R (2012) Small area estimation via M-quantile geographically weighted regression. TEST 21:1–28. doi:10.1007/s11749-010-0231-1
Särndal CE, Swensson B, Wretman J (1992) Model assisted survey sampling. Springer Series in Statistics. Springer, New York, p 694
Ståhl G et al (2016) Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation. For Ecosyst 3:5
Tomppo E (2006) The Finnish multi-source national forest inventory—small area estimation and map production. In: Kangas A, Maltamo M (eds) Forest inventory—methodology and applications Managing Forest Ecosystems, vol 10. Springer, Dordrecht, pp 195–224
Wang J, Fuller WA (2003) The mean squared error of small area predictors constructed with estimated area variances. J Am Stat Assoc 98:716–723
Wanjoya A, Torelli N, Datta G (2012) Small area estimation: an application of a flexible Fay-Herriot method. J Agric Sci Tech 14:76–86
Wolfram S (2016) The Mathematica Documentation Center (Version 11.1). Wolfram Research, Champaign, IL
Wolter KM (2007) Introduction to variance estimation. Statistics for social and behavioral sciences, 2nd edn. Springer, New York, p 447
Acknowledgements
Francisco Mauro was supported by Oregon State University. Field data from Burgos was collected by TRAGSA S.L., and the LiDAR data for this area was provided by the regional Government of Castilla and Leon, Servicio Territorial de Medio Ambiente de Burgos, Junta de Castilla y Leon. Parts of this study were supported by the Horizon 2020 project DIABOLO (Grant Agreement No. 633464).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Arne Nothdurft.
Rights and permissions
About this article
Cite this article
Magnussen, S., Mauro, F., Breidenbach, J. et al. Area-level analysis of forest inventory variables. Eur J Forest Res 136, 839–855 (2017). https://doi.org/10.1007/s10342-017-1074-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10342-017-1074-z