European Journal of Forest Research

, Volume 136, Issue 3, pp 555–569 | Cite as

A tree species range in the face of climate change: cork oak as a study case for the Mediterranean biome

  • Federico Vessella
  • Javier López-TiradoEmail author
  • Marco Cosimo Simeone
  • Bartolomeo Schirone
  • Pablo J. Hidalgo
Original Paper


Species distribution models are feasible methods for projecting theoretical responses of living organisms’ occurrence under several future climate change scenarios. The major interest is focused on trees, which regulate the equilibrium within ecosystems and guarantee the survival of many life forms on the Earth. The repercussions of climatic drivers are expected to pose the strongest threats for the Mediterranean biome, an acknowledged hotspot of biodiversity. Here, we focused on cork oak (Quercus suber L.), a keystone species of many landscapes, sustaining a rich biodiversity, ecological processes and economic incomes. Results of 8 combined ecological modelling techniques and two Global Circulation Models highlight a broad contraction of the species potential range over the twenty-first century, both under intermediate and high emissions scenarios. Coupled northward and upward shifts are predicted, mostly pertaining Iberia and North Africa. The potential areas detected at Levantine will likely undergo disappearance. To exacerbate the impacts of climate change, the future of the ecosystems linked to cork oak remains uncertain, because of the expected implications on the phenotypic plasticity or evolutionary responses. A synergy among niche-based, physiological and eco-genetic investigations is strongly needed in the field of applied research, to improve the assessment of conservation and reforestation actions.


Quercus suber Ecological niche modelling Forecasting Climate change Potential distribution Mediterranean biome 



We are in debt with the following Institutions for the useful assistance and availability, both capital for the realization of this study: Institut National de l’Information géographique et forestiére (France), Ministerio de Agricultura, Alimentación y Medio Ambiente (Spain), Ministero delle Politiche Agricole, Alimentari e Forestali (Italy), Instituto da Conservação da Natureza e das Florestas, Divisão de Apoio à Produção Florestal e Valorização de Recursos Silvestres (special thanks to Dr. Cristina Maria Pereira Santos, Dr. Luis Manuel Moreira Silva Reis, Prof. Maria Carolina Varela) (Portugal), Haut Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification (Morocco), Institut National de Recherche en Génie Rural Eaux et Forêts (Tunisia). We also thank to Prof. Fazia Krouchi (University Mouloud Mammeri of Tizi-Ouzou, Algeria) and Dr. Michele Bozzano (Bioversity International, Italy) for additional data about the cork oak occurrence in North Africa. The authors are grateful to the Council of Economy, Innovation, Science and Employment of the Andalusian Government for supporting this research in the framework of the Project “Modelo espacial de distribución de las quercíneas y otras formaciones forestales de Andalucía: una herramienta para la gestión y la conservación del patrimonio natural” (Code P10-RNM-6013). This is a contribution from the CEIMAR Journal Series. This work was partially funded by Zephyr Project, through the 7th Framework Programme (Grant agreement 308313).

Supplementary material

10342_2017_1055_MOESM1_ESM.doc (60 kb)
Online Resource 1 Main settings used in openModeller 1.5 and SPSS Statistics 20 to run the 8 algorithms in this study (DOC 59 kb)
10342_2017_1055_MOESM2_ESM.docx (9 mb)
Online Resource 2 Present time and forecasting projections in the twenty-first century resulted from each algorithm. Maps are organized following Fig. 2 criteria, including the colour gradient of the probability of occurrence (DOCX 9208 kb)
10342_2017_1055_MOESM3_ESM.tif (22.3 mb)
Online Resource 3 Maps of variation in percentage among the 8 algorithms in the forecasting projections used in this study (CCSM4 and MIROC5 centred on 2050 and 2070) (TIFF 22861 kb)
10342_2017_1055_MOESM4_ESM.docx (28 kb)
Online Resource 4 Extreme values (minimum–maximum) of climate and pedologic variables for Q. suber over the threshold (0.5) for each studied scenario in the present and the future (DOCX 27 kb)


  1. Acácio V, Holmgren M (2014) Pathways for resilience in Mediterranean cork oak land use systems. Ann Forest Sci 71(1):5–13. doi: 10.1007/s13595-012-0197-0 CrossRefGoogle Scholar
  2. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111. doi: 10.1111/j.1752-4571.2007.00013.x PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alberto FJ, Aitken SN, Alia R, Gonzalez-Martinez SC, Hanninen H, Kremer A, Lefevre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change evidence from tree populations. Global Change Biol 19(6):1645–1661. doi: 10.1111/Gcb.12181 CrossRefGoogle Scholar
  4. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259(4):660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  5. Al-Qaddi N, Vessella F, Stephan J, Al-Eisawi D, Schirone B (2016) Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Reg Environ Change. doi: 10.1007/s10113-016-0987-2 Google Scholar
  6. Aranda I, Castro L, Alía R, Pardos JA, Gil L (2005) Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber). Tree Physiol 25(8):1085–1090PubMedCrossRefGoogle Scholar
  7. Aranda I, Pardos M, Puértolas J, Jiménez MD, Pardos JA (2007) Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. Tree Physiol 27(5):671–677PubMedCrossRefGoogle Scholar
  8. Araújo MB, Williams PH (2000) Selecting areas for species persistence using occurrence data. Biol Conserv 96(3):331–345. doi: 10.1016/S0006-3207(00)00074-4 CrossRefGoogle Scholar
  9. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538. doi: 10.1111/j.1466-822x.2005.00182.x CrossRefGoogle Scholar
  10. Arenas M, Ray N, Currat M, Excoffier L (2012) Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 29(1):207–218. doi: 10.1093/molbev/msr187 PubMedCrossRefGoogle Scholar
  11. Aronson J, Pereira JS, Pausas JG (2009) Cork oak woodlands on the edge: ecology, Adaptive Management, and Restoration. Island Press, Washington, DCGoogle Scholar
  12. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2010) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3(2):327–338. doi: 10.1111/j.2041-210X.2011.00172.x CrossRefGoogle Scholar
  13. Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Change Biol 13(7):1368–1385. doi: 10.1111/j.1365-2486.2007.01357.x CrossRefGoogle Scholar
  14. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377. doi: 10.1111/j.1461-0248.2011.01736.x PubMedPubMedCentralCrossRefGoogle Scholar
  15. Benito Garzon M, Sanchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11(2):169–178. doi: 10.3170/2008-7-18348 CrossRefGoogle Scholar
  16. Bertrand R, Perez V, Gegout JC (2012) Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercus pubescens in France. Glob Change Biol 18(8):2648–2660. doi: 10.1111/j.1365-2486.2012.02679.x CrossRefGoogle Scholar
  17. Brotons L, Thuiller W, Araújo MB, Hirzel AH (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27(4):437–448. doi: 10.1111/j.0906-7590.2004.03764.x CrossRefGoogle Scholar
  18. Bussotti F, Ferrini F, Pollastrini M, Fini A (2014) The challenge of Mediterranean sclerophyllous vegetation under climate change: from acclimation to adaptation. Environ Exp Bot 103:80–98. doi: 10.1016/j.envexpbot.2013.09.013 CrossRefGoogle Scholar
  19. Bussotti F, Pollastrini M, Holland V, Bruggemann W (2015) Functional traits and adaptive capacity of European forests to climate change. Environ Exp Bot 111:91–113. doi: 10.1016/j.envexpbot.2014.11.006 CrossRefGoogle Scholar
  20. Carrión JS, Parra I, Navarro C, Munuera M (2000) Past distribution and ecology of the cork oak (Quercus suber) in the Iberian Peninsula: a pollen-analytical approach. Divers Distrib 6(1):29–44. doi: 10.1046/j.1472-4642.2000.00070.x CrossRefGoogle Scholar
  21. Casazza G, Giordani P, Benesperi R, Foggi B, Viciani D, Filigheddu R, Farris E, Bagella S, Pisanu S, Mariotti MG (2014) Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biol Conserv 179:129–138. doi: 10.1016/j.biocon.2014.09.015 CrossRefGoogle Scholar
  22. Connolly B, Orrock J (2015) Climatic variation and seed persistence: freeze–thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens. Oecologia. doi: 10.1007/s00442-015-3369-4 PubMedGoogle Scholar
  23. Costa GC, Nogueira C, Machado RB, Colli GR (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers Conserv 19(3):883–899. doi: 10.1007/s10531-009-9746-8 CrossRefGoogle Scholar
  24. Coudun C, Gegout JC, Piedallu C, Rameau JC (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. J Biogeogr 33(10):1750–1763. doi: 10.1111/j.1365-2699.2005.01443.x CrossRefGoogle Scholar
  25. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7(4):357–373. doi: 10.1046/j.1365-2486.2001.00383.x CrossRefGoogle Scholar
  26. Crispo E (2008) Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J Evol Biol 21(6):1460–1469. doi: 10.1111/j.1420-9101.2008.01592.x PubMedCrossRefGoogle Scholar
  27. Daget P (1977) Le bioclimat mediterraneen: caracteres generaux, modes de caracterisation. Vegetation 34(1):1–20. doi: 10.1007/bf00119883 CrossRefGoogle Scholar
  28. de Jong G (2005) Evolution of phenotypic plasticity: patterns of plasticity and the emergence of ecotypes. New Phytol 166(1):101–117. doi: 10.1111/j.1469-8137.2005.01322.x PubMedCrossRefGoogle Scholar
  29. Delzon S, Urli M, Samalens JC, Lamy JB, Lischke H, Sin F, Zimmermann NE, Porte AJ (2013) Field evidence of colonisation by Holm Oak, at the Northern Margin of its distribution range, during the anthropocene Period. PLoS ONE. doi: 10.1371/journal.pone.0080443 Google Scholar
  30. Derory J, Léger P, Garcia V, Schaeffer J, Hauser M-T, Salin F, Luschnig C, Plomion C, Glössl J, Kremer A (2006) Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytol 170(4):723–738. doi: 10.1111/j.1469-8137.2006.01721.x PubMedCrossRefGoogle Scholar
  31. Diaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci United States of America 104(52):20684–20689. doi: 10.1073/pnas.0704716104 CrossRefGoogle Scholar
  32. Diniz-Filho JAF, Mauricio Bini L, Fernando Rangel T, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906. doi: 10.1111/j.1600-0587.2009.06196.x CrossRefGoogle Scholar
  33. Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Ann Rev Environ Resour 28:137–167. doi: 10.1146/ CrossRefGoogle Scholar
  34. Dodd RS, Afzal-Rafii Z (2004) Selection and dispersal in a multispecies oak hybrid zone. Evolution 58(2):261–269PubMedCrossRefGoogle Scholar
  35. Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3(10):1829–1837. doi: 10.1371/journal.pbio.0030319 CrossRefGoogle Scholar
  36. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  37. Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 211–272Google Scholar
  38. Gandour M, Khouja ML, Toumi L, Triki S (2007) Morphological evaluation of cork oak (Quercus suber): mediterranean provenance variability in Tunisia. Ann For Sci 64(5):549–555CrossRefGoogle Scholar
  39. Gerber S, Chadœuf J, Gugerli F, Lascoux M, Buiteveld J, Cottrell J, Dounavi A, Fineschi S, Forrest LL, Fogelqvist J (2014) High rates of gene flow by pollen and seed in oak populations across Europe. PLoS ONE 9(1):e85130PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21(3):394–407. doi: 10.1111/j.1365-2435.2007.01283.x CrossRefGoogle Scholar
  41. Giorgi F, Bi XQ, Pal J (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071–2100). Clim Dynam 23(7–8):839–858. doi: 10.1007/s00382-004-0467-0 CrossRefGoogle Scholar
  42. Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Change Biol 16(3):1082–1106. doi: 10.1111/j.1365-2486.2009.02084.x CrossRefGoogle Scholar
  43. Gould SF, Beeton NJ, Harris RMB, Hutchinson MF, Lechner AM, Porfirio LL, Mackey BG (2014) A tool for simulating and communicating uncertainty when modelling species distributions under future climates. Ecol Evol 4(24):4798–4811. doi: 10.1002/Ece3.1319 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369(6480):448PubMedCrossRefGoogle Scholar
  45. Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars JGB, Walsh MG, Gonzalez MR (2014) SoilGrids1 km-global soil information based on automated mapping. PLoS ONE. doi: 10.1371/journal.pone.0105992 PubMedPubMedCentralGoogle Scholar
  46. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785. doi: 10.1111/j.0906-7590.2006.04700.x CrossRefGoogle Scholar
  47. Hidalgo PJ, Marín JM, Quijada J, Moreira JM (2008) A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. For Ecol Manag 255(1):25–34. doi: 10.1016/j.foreco.2007.07.012 CrossRefGoogle Scholar
  48. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  49. Holliday JA, Suren H, Aitken SN (2012) Divergent selection and heterogeneous migration rates across the range of Sitka spruce (Picea sitchensis). P R Soc B 279(1734):1675–1683. doi: 10.1098/rspb.2011.1805 CrossRefGoogle Scholar
  50. Homolka A, Schueler S, Burg K, Fluch S, Kremer A (2013) Insights into drought adaptation of two European oak species revealed by nucleotide diversity of candidate genes. Tree Genet Genomes 9(5):1179–1192. doi: 10.1007/s11295-013-0627-7 CrossRefGoogle Scholar
  51. Huang X, Schmitt J, Dorn L, Griffith C, Effgen S, Takao S, Koornneef M, Donohue K (2010) The earliest stages of adaptation in an experimental plant population: strong selection on QTLS for seed dormancy. Mol Ecol 19(7):1335–1351. doi: 10.1111/j.1365-294X.2010.04557.x PubMedCrossRefGoogle Scholar
  52. Ibáñez B, Ibáñez I, Gómez-Aparicio L, Ruiz-Benito P, García LV, Marañón T (2014) Contrasting effects of climate change along life stages of a dominant tree species: the importance of soil-climate interactions. Divers Distrib 20(8):872–883. doi: 10.1111/Ddi.12193 CrossRefGoogle Scholar
  53. Ibáñez B, Gómez-Aparicio L, Stoll P, Ávila JM, Pérez-Ramos IM, Marañón T (2015) A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests. PLoS ONE 10(2):e0117827. doi: 10.1371/journal.pone.0117827 PubMedPubMedCentralCrossRefGoogle Scholar
  54. IBM (2011) IBM SPSS Statistics for Windows, Version 20.0. IBM Corp, ArmonkGoogle Scholar
  55. IPCC (2014) Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva (Switzerland)Google Scholar
  56. Keenan T, Serra JM, Lloret F, Ninyerola M, Sabate S (2011) Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob Change Biol 17(1):565–579. doi: 10.1111/j.1365-2486.2010.02254.x CrossRefGoogle Scholar
  57. Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci United States of America 105(33):11823–11826. doi: 10.1073/pnas.0802891105 CrossRefGoogle Scholar
  58. Klausmeyer KR, Shaw MR (2009) Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS ONE. doi: 10.1371/Journal.Pone.0006392 PubMedPubMedCentralGoogle Scholar
  59. Kremer A, Potts BM, Delzon S (2014) Genetic divergence in forest trees: understanding the consequences of climate change. Funct Ecol 28(1):22–36. doi: 10.1111/1365-2435.12169 CrossRefGoogle Scholar
  60. Kumar P (2012) Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodivers Conserv 21(5):1251–1266. doi: 10.1007/s10531-012-0279-1 CrossRefGoogle Scholar
  61. Leakey RE, Lewin R (1996) The sixth extinction: patterns of life and the future of humankind. Anchor Books, Newr York CityGoogle Scholar
  62. Lemes P, Melo AS, Loyola RD (2014) Climate change threatens protected areas of the Atlantic Forest. Biodivers Conserv 23(2):357–368. doi: 10.1007/s10531-013-0605-2 CrossRefGoogle Scholar
  63. Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771. doi: 10.1126/science.1156831 PubMedCrossRefGoogle Scholar
  64. Lepetz V, Massot M, Schmeller DS, Clobert J (2009) Biodiversity monitoring: some proposals to adequately study species’ responses to climate change. Biodivers Conserv 18(12):3185–3203. doi: 10.1007/s10531-009-9636-0 CrossRefGoogle Scholar
  65. Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Conserv Biol 17:1591–1600. doi: 10.1111/j.1523-1739.2003.00233.x CrossRefGoogle Scholar
  66. López-Tirado J, Hidalgo PJ (2014) A high resolution predictive model for relict trees in the Mediterranean-mountain forests (Pinus sylvestris L., P. nigra Arnold and Abies pinsapo Boiss.) from the south of Spain: a reliable management tool for reforestation. For Ecol Manag 330:105–114CrossRefGoogle Scholar
  67. López-Tirado J, Hidalgo PJ (2016a) Predictive modelling of climax oak trees in southern Spain: insights in a scenario of global change. Plant Ecol 217:451–463CrossRefGoogle Scholar
  68. López-Tirado J, Hidalgo PJ (2016b) Ecological niche modelling of three Mediterranean pine species in the south of Spain: a tool for afforestation/reforestation programs in the Twenty first century. New For 47:411–429CrossRefGoogle Scholar
  69. Magri D, Fineschi S, Bellarosa R, Buonamici A, Sebastiani F, Schirone B, Simeone MC, Vendramin GG (2007) The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Mol Ecol 16(24):5259–5266. doi: 10.1111/j.1365-294X.2007.03587.x PubMedCrossRefGoogle Scholar
  70. Malizia RW, Stigall AL (2011) Niche stability in Late Ordovician articulated brachiopod species before, during, and after the Richmondian Invasion. Palaeogeogr Palaeocl 311(3–4):154–170. doi: 10.1016/j.palaeo.2011.08.017 CrossRefGoogle Scholar
  71. Marras T, Petroselli A, Vessella F, Damiani G, Schirone B (2014) Noble biomass: restore, recycle, profit using cork oak (Quercus suber L.). Appl Math Sci 8(130):6495–6513Google Scholar
  72. McKinnon JS, Mori S, Blackman BK, David L, Kingsley DM, Jamieson L, Chou J, Schluter D (2004) Evidence for ecology’s role in speciation. Nature 429(6989):294–298PubMedCrossRefGoogle Scholar
  73. Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36(7):1333–1345. doi: 10.1111/j.1365-2699.2008.02051.x CrossRefGoogle Scholar
  74. Modesto IS, Miguel C, Pina-Martins F, Glushkova M, Veloso M, Paulo OS, Batista D (2014) Identifying signatures of natural selection in cork oak (Quercus suber L.) genes through SNP analysis. Tree Genet Genomes 10(6):1645–1660. doi: 10.1007/s11295-014-0786-1 CrossRefGoogle Scholar
  75. Muñoz Álvarez JM (2010) Vegetación de la Reserva de la Biosfera y de los Espacios Naturales de Sierra Morena. Consejería de Medio Ambiente, Junta de AndalucíaGoogle Scholar
  76. Muñoz MED, de Giovanni R, de Siqueira MF, Sutton T, Brewer P, Pereira RS, Canhos DAL, Canhos VP (2011) openmodeller: a generic approach to species’ potential distribution modelling. Geoinformatica 15(1):111–135. doi: 10.1007/s10707-009-0090-7 CrossRefGoogle Scholar
  77. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 PubMedCrossRefGoogle Scholar
  78. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15(12):684–692. doi: 10.1016/j.tplants.2010.09.008 PubMedCrossRefGoogle Scholar
  79. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  80. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42. doi: 10.1038/Nature01286 PubMedCrossRefGoogle Scholar
  81. Pearman PB, Randin CF, Broennimann O, Vittoz P, van der Knaap WO, Engler R, Le Lay G, Zimmermann NE, Guisan A (2008) Prediction of plant species distributions across six millennia. Ecol Lett 11(4):357–369. doi: 10.1111/j.1461-0248.2007.01150.x PubMedCrossRefGoogle Scholar
  82. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12(5):361–371. doi: 10.1046/j.1466-822X.2003.00042.x CrossRefGoogle Scholar
  83. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9(2):131–140. doi: 10.1046/j.1365-2486.2003.00566.x CrossRefGoogle Scholar
  84. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol S 37:187–214. doi: 10.1146/annurev.ecolsys.37.091305.110215 CrossRefGoogle Scholar
  85. Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161(1):151–164CrossRefGoogle Scholar
  86. Petroselli A, Vessella F, Cavagnuolo L, Piovesan G, Schirone B (2013) Ecological behavior of Quercus suber and Quercus ilex inferred by topographic wetness index (TWI). Trees Struct Funct 27(5):1201–1215. doi: 10.1007/s00468-013-0869-x CrossRefGoogle Scholar
  87. Planton S, Lionello P, Artale V, Aznar R, Carrillo A, Colin J, Congedi L, Dubois C, Elizalde A, Gualdi S, Hertig E, Jacobeit J, Jordà G, Li L, Mariotti A, Piani C, Ruti P, Sanchez-Gomez E, Sannino G, Sevault F, Somot S, Tsimplis M (2012) 8 - The Climate of the Mediterranean Region in Future Climate Projections. In: Lionello P (ed) The Climate of the Mediterranean Region. Elsevier, Oxford, pp 449-502. doi:
  88. Pons J, Pausas JG (2006) Oak regeneration in heterogeneous landscapes: the case of fragmented Quercus suber forests in the eastern Iberian Peninsula. Forest Ecol Manag 231(1–3):196–204. doi: 10.1016/j.foreco.2006.05.049 CrossRefGoogle Scholar
  89. Ramírez-Valiente JA, Valladares F, Huertas AD, Granados S, Aranda I (2011) Factors affecting cork oak growth under dry conditions: local adaptation and contrasting additive genetic variance within populations. Tree Genet Genomes 7(2):285–295. doi: 10.1007/s11295-010-0331-9
  90. Ramírez-Valiente JA, Sánchez-Gómez D, Aranda I, Valladares F (2010) Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities. Tree Physiol 30(5):618–627. doi: 10.1093/treephys/tpq013 PubMedCrossRefGoogle Scholar
  91. Rivas-Martínez S, Penas A, Díaz TE (2004) Bioblimatic map of Europe. Cartographic Service, University of Léon, LéonGoogle Scholar
  92. Rojas-Soto OR, Sosa V, Ornelas JF (2012) Forecasting cloud forest in eastern and southern Mexico: conservation insights under future climate change scenarios. Biodivers Conserv 21(10):2671–2690. doi: 10.1007/s10531-012-0327-x CrossRefGoogle Scholar
  93. Roughgarden J (1974) The fundamental and realized niche of a solitary population. Am Nat 108(960):232–235CrossRefGoogle Scholar
  94. Schirone B, Salis A, Vessella F (2011) Effectiveness of the Miyawaki method in Mediterranean forest restoration programs. Landsc Ecol Eng 7(1):81–92. doi: 10.1007/s11355-010-0117-0 CrossRefGoogle Scholar
  95. Schröter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337. doi: 10.1126/science.1115233 PubMedCrossRefGoogle Scholar
  96. Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang H, Grivet D (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol 19(17):3806–3823. doi: 10.1111/j.1365-294X.2010.04726.x PubMedCrossRefGoogle Scholar
  97. Soto A, Lorenzo Z, Gil L (2007) Differences in fine-scale genetic structure and dispersal in Quercus ilex L. and Q. suber L.: consequences for regeneration of mediterranean open woods. Heredity 99(6):601–607. doi: 10.1038/sj.hdy.6801007 PubMedCrossRefGoogle Scholar
  98. Svenning J-C, Fitzpatrick MC, Normand S, Graham CH, Pearman PB, Iverson LR, Skov F (2010) Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe. Ecography 33(6):1070–1080. doi: 10.1111/j.1600-0587.2010.06301.x CrossRefGoogle Scholar
  99. Temunovic M, Frascaria-Lacoste N, Franjic J, Satovic Z, Fernandez-Manjarres JF (2013) Identifying refugia from climate change using coupled ecological and genetic data in a transitional Mediterranean-temperate tree species. Mol Ecol 22(8):2128–2142. doi: 10.1111/Mec.12252 PubMedCrossRefGoogle Scholar
  100. Thuiller W, Araújo MB, Lavorel S (2003) Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. J Veg Sci 14(5):669–680. doi: 10.1111/j.1654-1103.2003.tb02199.x CrossRefGoogle Scholar
  101. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci United States of America 102(23):8245–8250. doi: 10.1073/pnas.0409902102 CrossRefGoogle Scholar
  102. Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470(7335):531–534. doi: 10.1038/nature09705 PubMedCrossRefGoogle Scholar
  103. Valladares F, Matesanz S, Guilhaumon F, Araujo MB, Balaguer L, Benito-Garzon M, Cornwell W, Gianoli E, van Kleunen M, Naya DE, Nicotra AB, Poorter H, Zavala MA (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17(11):1351–1364. doi: 10.1111/Ele.12348 PubMedCrossRefGoogle Scholar
  104. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  105. Varela MC The EUFORGEN Quercus suber Network and the research projects for the evaluation of genetic variability of cork oak. In: Mediterranean Oaks Network, Report of the first meeting, 12-14 October 2000, Antalya, Turkey. International Plant Genetic Resources Institute, Rome, Italy, 2001. ISBN 92-9043-469-4 IPGRI Via dei Tre Denari, 472/a 00057 Maccarese (Fiumicino) Rome, Italy International Plant Genetic Resources Institute, p 6Google Scholar
  106. Vessella F, Schirone B (2013) Predicting potential distribution of Quercus suber in Italy based on ecological niche models: conservation insights and reforestation involvements. For Ecol Manag 304:150–161. doi: 10.1016/j.foreco.2013.05.006 CrossRefGoogle Scholar
  107. Vessella F, Simeone MC, Schirone B (2015) Quercus suber range dynamics by ecological niche modelling: from the last interglacial to present time. Quat Sci Rev 119:85–93. doi: 10.1016/j.quascirev.2015.04.018 CrossRefGoogle Scholar
  108. Vitale M, Mancini M, Matteucci G, Francesconi F, Valenti R, Attorre F (2012) Model-based assessment of ecological adaptations of three forest tree species growing in Italy and impact on carbon and water balance at national scale under current and future climate scenarios. Iforest Biogeosci For 5:235–246. doi: 10.3832/ifor0634-005 CrossRefGoogle Scholar
  109. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395. doi: 10.1038/416389a PubMedCrossRefGoogle Scholar
  110. Wang TL, Campbell EM, O’Neill GA, Aitken SN (2012) Projecting future distributions of ecosystem climate niches: uncertainties and management applications. For Ecol Manag 279:128–140. doi: 10.1016/j.foreco.2012.05.034 CrossRefGoogle Scholar
  111. Zurell D, Thuiller W, Pagel J, Cabral JS, Münkemüller T, Gravel D, Dullinger S, Normand S, Schiffers KH, Moore KA (2016) Benchmarking novel approaches for modelling species range dynamics. Glob Change Biol. doi: 10.1111/gcb.13251 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Federico Vessella
    • 1
  • Javier López-Tirado
    • 2
    Email author
  • Marco Cosimo Simeone
    • 1
  • Bartolomeo Schirone
    • 1
  • Pablo J. Hidalgo
    • 2
  1. 1.Department of Agriculture and Forestry (D.A.F.N.E.)Università degli Studi della TusciaViterboItaly
  2. 2.Department of Integrated Sciences, Faculty of Experimental Sciences, International Campus of Excellence of the Sea (CEIMAR)University of HuelvaHuelvaSpain

Personalised recommendations