European Journal of Forest Research

, Volume 136, Issue 5–6, pp 1071–1090 | Cite as

The prospects of silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst) in mixed mountain forests under various management strategies, climate change and high browsing pressure

  • Matija Klopčič
  • Marco Mina
  • Harald Bugmann
  • Andrej Bončina
Original Paper


In the Dinaric Mountains, the future of silver fir and Norway spruce appears to be uncertain, especially given the threat of climate change to both species and browsing pressure on fir. Stand development of mixed Dinaric mountain forest in Slovenia was simulated for the period 2010–2110 using the ForClim model to explore the prospects of both target species under five management scenarios (business-as-usual, no management, single-tree selection, fir conservation and exclusion of browsing) and three climate scenarios (current climate and two climate change scenarios). Simulations under the current climate revealed a decrease in fir proportion from 53% in 2010 to 14–37% in 2110, while the proportion of spruce remained relatively constant (13% in 2010 and 9–13% in 2110). Climate change may intensify the decline of both species along an elevation gradient. An upward shift was projected for fir in the observed period; in low-elevation stands (600–800 m a.s.l.), fir could almost disappear, while at high elevations (1050–1400 m a.s.l.), our simulations projected an increase in the proportion of both fir and spruce. No single management strategy proved to be significantly beneficial for either species. The most promising strategies were the fir conservation-oriented scenario and the exclusion of browsing; large ungulates strongly impacted the development of fir, but not that of spruce. Forest management affords different options for maintaining both species, but its capacity to prevent fir decline under climate change and high browsing pressure is limited. Concurrent measures of wildlife management and silviculture should be applied to maintain conifers in the studied forests.


ForClim Stand dynamics Tree species composition Decline Dinaric Mountains 



This research was financially supported by the ARANGE project within the European Commission’s 7th Framework Program (Grant agreement no. 289437). The first author was additionally funded by the Pahernik Foundation. We are grateful to Janez Škerbec and Igor Pridigar, local foresters in the Snežnik area, who made the data available and provided us with important and useful information.


  1. Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6: art.129. doi: 10.1890/ES15-00203.1
  2. Bončina A (2011) History, current status and future prospects of uneven-aged forest management in the Dinaric region: an overview. Forestry 84:467–478. doi: 10.1093/forestry/cpr023 CrossRefGoogle Scholar
  3. Bošel’a M, Sedmák R, Sedmáková D, Marušák R, Kulla L (2014) Temporal shifts of climate—growth relationships of Norway spruce as an indicator of health decline in the Beskids, Slovakia. For Ecol Manag 325:108–117. doi: 10.1016/j.foreco.2014.03.055 CrossRefGoogle Scholar
  4. Brang P et al (2014) Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87:492–503. doi: 10.1093/forestry/cpu018 CrossRefGoogle Scholar
  5. Bugmann HKM (1996) A simplified forest model to study species composition along climate gradients. Ecology 77:2055–2074CrossRefGoogle Scholar
  6. Bugmann H (2001) A review of forest gap models. Clim Chang 51:259–305. doi: 10.1023/A:1012525626267 CrossRefGoogle Scholar
  7. Bugmann HKM, Solomon AM (2000) Explaining forest composition and biomass across multiple biogeographical regions. Ecol Appl 10:95–114. doi: 10.2307/2640989 CrossRefGoogle Scholar
  8. Bugmann H, Cordonnier T, Truhetz H, Lexer MJ (2017) Impacts of business-as-usual management on ecosystem services in European mountain ranges under climate change. Reg Environ Chang 17(1):3–16CrossRefGoogle Scholar
  9. Buongiorno J, Michie BR (1980) A matrix model of uneven-aged forest management. For Sci 26:609–625Google Scholar
  10. Busing RT, Solomon AM, McKane RB, Burdick CA (2007) Forest dynamics in Oregon landscapes: evaluation and application of an individual-based model. Ecol Appl 17:1967–1981CrossRefPubMedGoogle Scholar
  11. Cailleret M, Davi H (2011) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees 25:265–276. doi: 10.1007/s00468-010-0503-0 CrossRefGoogle Scholar
  12. Cailleret M, Heurich M, Bugmann H (2014) Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. For Ecol Manag 328:179–192. doi: 10.1016/j.foreco.2014.05.030 CrossRefGoogle Scholar
  13. Camarero JJ, Bigler C, Linares JC, Gil-Pelegrín E (2011) Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests. For Ecol Manag 262:759–769. doi: 10.1016/j.foreco.2011.05.009 CrossRefGoogle Scholar
  14. Cavard X, Macdonald SE, Bergeron Y, Chen HYH (2011) Importance of mixedwoods for biodiversity conservation: evidence for understory plants, songbirds, soil fauna, and ectomycorrhizae in northern forests. Environ Rev 19:142–161. doi: 10.1139/a11-004 CrossRefGoogle Scholar
  15. Čavlović J, Bončina A, Božić M, Goršić E, Simončič T, Teslak K (2015) Depression and growth recovery of silver fir in uneven-aged Dinaric forests in Croatia from 1901 to 2001. Forestry 88:586–598. doi: 10.1093/forestry/cpv026 CrossRefGoogle Scholar
  16. Clark JS et al (2001) Ecological forecasts: an emerging imperative. Science 293:657–660. doi: 10.1126/science.293.5530.657 CrossRefPubMedGoogle Scholar
  17. Didion M, Kupferschmid AD, Bugmann H (2009) Long-term effects of ungulate browsing on forest composition and structure. For Ecol Manag 258:S44–S55CrossRefGoogle Scholar
  18. Didion M, Kupferschmid AD, Wolf A, Bugmann H (2011) Ungulate herbivory modifies the effects of climate change on mountain forests. Clim Chang 109:647–669. doi: 10.1007/s10584-011-0054-4 CrossRefGoogle Scholar
  19. Durand-Gillmann M, Cailleret M, Boivin T, Nageleisen L-M, Davi H (2014) Individual vulnerability factors of Silver fir (Abies alba Mill.) to parasitism by two contrasting biotic agents: mistletoe (Viscum album L. ssp. abietis) and bark beetles (Coleoptera: Curculionidae: Scolytinae) during a decline process. Ann For Sci 71:659–673. doi: 10.1007/s13595-012-0251-y CrossRefGoogle Scholar
  20. Elling W, Dittmar C, Pfaffelmoser K, Rötzer T (2009) Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. For Ecol Manag 257:1175–1187CrossRefGoogle Scholar
  21. FAO (2010) Global Forest Resources Assessment 2010. Main Report. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  22. Ficko A, Poljanec A, Bončina A (2011) Do changes in spatial distribution, structure and abundance of silver fir (Abies alba Mill.) indicate its decline? For Ecol Manag 261:844–854. doi: 10.1016/j.foreco.2010.12.014 CrossRefGoogle Scholar
  23. Ficko A, Roessiger J, Boncina A (2016) Can the use of continuous cover forestry alone maintain silver fir (Abies alba Mill.) in central European mountain forests? Forestry 89(4):412–421. doi: 10.1093/forestry/cpw013 CrossRefGoogle Scholar
  24. FMP (2011) Forest management plan for Forest Management Region Postojna (2011–2020) (in Slovene). Slovenia Forest Service, PostojnaGoogle Scholar
  25. Fontes L, Bontemps JD, Bugmann H et al (2010) Models for supporting forest management in a changing environment. For Syst 19:8–29. doi: 10.5424/fs/201019S-9315 Google Scholar
  26. Gamfeldt L, Snäll T, Bagchi R et al (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340. doi: 10.1038/ncomms2328 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guillemot J et al (2014) Assessing the effects of management on forest growth across France: insights from a new functional–structural model. Ann Bot 114:779–793. doi: 10.1093/aob/mcu059 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Heuze P, Schnitzler A, Klein F (2005) Consequences of increased deer browsing winter on silver fir and spruce regeneration in the Southern Vosges mountains: implications for forest management. Ann For Sci 62:175–181. doi: 10.1051/forest:2005009 CrossRefGoogle Scholar
  29. Hlásny T, Turčáni M (2013) Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Ann For Sci 70:481–491. doi: 10.1007/s13595-013-0279-7 CrossRefGoogle Scholar
  30. IPCC (2013) Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  31. Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32:L18409. doi: 10.1029/2005GL023252 CrossRefGoogle Scholar
  32. Jönsson AM, Harding S, Bärring L, Ravn HP (2007) Impact of climate change on the population dynamics of Ips typographus in southern Sweden. Agric For Meteorol 146:70–81. doi: 10.1016/j.agrformet.2007.05.006 CrossRefGoogle Scholar
  33. Klopčič M, Bončina A (2011) Stand dynamics of silver fir (Abies alba Mill.)-European beech (Fagus sylvatica L.) forests during the past century: a decline of silver fir? Forestry 84:259–271. doi: 10.1093/forestry/cpr011 CrossRefGoogle Scholar
  34. Klopčič M, Jerina K, Bončina A (2010) Long-term changes of structure and tree species composition in Dinaric uneven-aged forests: are red deer an important factor? Eur J For Res 129:277–288. doi: 10.1007/s10342-009-0325-z CrossRefGoogle Scholar
  35. Klopčič M, Simončič T, Bončina A (2015) Comparison of regeneration and recruitment of shade-tolerant and light-demanding tree species in mixed uneven-aged forests: experiences from the Dinaric region. Forestry. doi: 10.1093/forestry/cpv021 Google Scholar
  36. Körner C (2012) Alpine treelines. Functional ecology of the global high elevation tree limits. Springer, BaselGoogle Scholar
  37. Lasch P, Badeck F-W, Suckow F, Lindner M, Mohr P (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For Ecol Manag 207(1–2):59–74CrossRefGoogle Scholar
  38. Levanič T et al (2009) The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees 23:169–180. doi: 10.1007/s00468-008-0265-0 CrossRefGoogle Scholar
  39. Lexer MJ (2013) Deliverable D1.2—Catalogue of harmonized environmental variables. Institute for Silviculture and Forest Engineering, University of Life Sciences Vienna, Austria. Accessed on 25 May 2016Google Scholar
  40. Lexer MJ et al (2002) The sensitivity of Austrian forests to scenarios of climatic change: a large-scale risk assessment based on a modified gap model and forest inventory data. For Ecol Manag 162:53–72. doi: 10.1016/S0378-1127(02)00050-6 CrossRefGoogle Scholar
  41. Lindner M, Lasch P, Cramer W (1996) Application of a forest succession model to a continentality gradient through Central Europe. Clim Chang 34(2):191–199CrossRefGoogle Scholar
  42. Lindner M, Maroschek M, Netherer S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRefGoogle Scholar
  43. Mathews JD (1999) Silvicultural systems. Oxford University Press Inc., New YorkGoogle Scholar
  44. Meier ES, Lischke H, Schmatz DR, Zimmermann NE (2012) Climate, competition and connectivity affect future migration and ranges of European trees. Glob Ecol Biogeogr 21:164–178CrossRefGoogle Scholar
  45. Millington JDA, Walters MB, Matonis MS, Liu J (2013) Modelling for forest management synergies and trade-offs: northern hardwood tree regeneration, timber and deer. Ecol Model 248:103–112. doi: 10.1016/j.ecolmodel.2012.09.019 CrossRefGoogle Scholar
  46. Mina M, Bugmann H, Klopčič M, Cailleret M (2017) Accurate modeling of harvesting is key for projecting future forest dynamics: a case study in the Slovenian mountains. Reg Environ Chang 17(1):49–64CrossRefGoogle Scholar
  47. Mok H-F, Arndt SK, Nitschke CR (2011) Modelling the potential impact of climate variability and change on species regeneration potential in the temperate forests of South-Eastern Australia. Glob Chang Biol 18(3):1053–1072CrossRefGoogle Scholar
  48. Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219. doi: 10.1111/j.1461-0248.2011.01691.x CrossRefPubMedGoogle Scholar
  49. Motta R (1996) Impact of wild ungulates on forest regeneration and tree composition of mountain forests in the Western Italian Alps. For Ecol Manag 88:93–98. doi: 10.1016/S0378-1127(96)03814-5 CrossRefGoogle Scholar
  50. O’Hara KL (2014) Multiaged silviculture: Managing for Complex forest stand structures. Oxford University Press, New YorkGoogle Scholar
  51. Oliva J, Colinas C (2007) Decline of silver fir (Abies alba Mill.) stands in the Spanish Pyrenees: role of management, historic dynamics and pathogens. For Ecol Manag 252:84–97. doi: 10.1016/j.foreco.2007.06.017 CrossRefGoogle Scholar
  52. Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New YorkGoogle Scholar
  53. Pabst RJ, Goslin MN, Garman SL, Spies TA (2008) Calibrating and testing a gap model for simulating forest management in the Oregon Coast Range. For Ecol Manag 256(5):958–972CrossRefGoogle Scholar
  54. Peng C (2000) Growth and yield models for uneven-aged stands: past, present and future. For Ecol Manag 132:259–279CrossRefGoogle Scholar
  55. Perko F (2002) Zapisano v branikah: Gozdovi in gozdarstvo od Sneznika do Nanosa skozi cas (in Slovene). Gozdarsko drustvo Postojna, PostojnaGoogle Scholar
  56. Pretzsch H, Grote R, Reineking B, Rötzer T, Seifert S (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087. doi: 10.1093/aob/mcm246 CrossRefPubMedGoogle Scholar
  57. Pretzsch H, Block J, Deiler J et al (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67(7):712CrossRefGoogle Scholar
  58. Price MF, Gratzer G, Duguma LA, Kohler T, Maselli D, Romeo R (eds) (2011) Mountain forests in a changing world—realizing values, addressing challenges. FAO/MPS and SDC, Rome, ItalyGoogle Scholar
  59. Rasche L, Fahse L, Zingg A, Bugmann H (2011) Getting a virtual forester fit for the challenge of climatic change. J Appl Ecol 48:1174–1186. doi: 10.1111/j.1365-2664.2011.02014.x CrossRefGoogle Scholar
  60. Rasche L, Fahse L, Bugmann H (2013) Key factors affecting the future provision of tree-based forest ecosystem goods and services. Clim Chang 118:579–593. doi: 10.1007/s10584-012-0664-5 CrossRefGoogle Scholar
  61. Sage RW Jr, Porter WF, Underwood HB (2003) Windows of opportunity: white-tailed deer and the dynamics of northern hardwood forests of the northeastern US. J Nat Conserv 10:213–220. doi: 10.1078/1617-1381-00021 CrossRefGoogle Scholar
  62. Schütz J-P (2001) Der Plenterwald und weitere Formen strukturierter und gemischter Wälder. Parey, BerlinGoogle Scholar
  63. Sendak PE, Brissette JC, Frank RM (2003) Silviculture affects composition, growth, and yield in mixed northern conifers: 40-year results from the Penobscot experimental forest. Can J For Res 33(11):2116–2128CrossRefGoogle Scholar
  64. SFS (2012) Forest inventory database. Slovenian Forest Service, LjubljanaGoogle Scholar
  65. Shao G, Bugmann H, Yan X (2001) A comparative analysis of the structure and behavior of three gap models at sites in northeastern China. Clim Chang 51:389–413. doi: 10.1023/A:1012550300768 CrossRefGoogle Scholar
  66. Spiecker H (2000) Growth of Norway spruce (Picea abies [L.] Karst.) under changing environmental conditions in Europe. In: Klimo E, Hager H, Kulhavý (eds) Spruce monocultures in Central Europe—problems and prospects. EFI Proceedings no.33, pp 11–26Google Scholar
  67. Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206CrossRefGoogle Scholar
  68. Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402. doi: 10.1890/12-1503.1 CrossRefGoogle Scholar
  69. van den Besselaar EJM, Haylock MR, van der Schrier G, Klein Tank AMG (2011) A European daily high-resolution observational gridded data set of sea level pressure. J Geophys Res Atmos 116:D11110. doi: 10.1029/2010JD015468 CrossRefGoogle Scholar
  70. van der Maaten-Theunissen M, Kahle H-P, van der Maaten E (2013) Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann For Sci 70:185–193. doi: 10.1007/s13595-012-0241-0 CrossRefGoogle Scholar
  71. Veselic Z, Robic D (2001) Posodobitev poimenovanja sintaksonov, ki nakazujejo (indicirajo) skupine rastisc, njihove podskupine in rastiscne tipe v racunalniski bazi CE ZGS: tipkopis (in Slovene). Slovenia Forest Service, LjubljanaGoogle Scholar
  72. Vila B, Vennetier M, Ripert C, Chandioux O, Liang E, Guibal F, Torre F (2008) Has global change induced divergent trends in radial growth of Pinus sylvestris and Pinus halepensis at their bioclimatic limit? The example of the Sainte-Baume forest (south-east France). Ann For Sci 65:709. doi: 10.1051/forest:2008048 CrossRefGoogle Scholar
  73. Vrška T, Adam D, Hort L, Kolár T, Janík D (2009) European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians—A developmental cycle or a linear trend induced by man? For Ecol Manag 258:347–356CrossRefGoogle Scholar
  74. Walther G-R, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Matija Klopčič
    • 1
  • Marco Mina
    • 2
    • 3
  • Harald Bugmann
    • 2
  • Andrej Bončina
    • 1
  1. 1.Department of Forestry and Renewable Forest Resources, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of Environmental Sciences, Forest EcologySwiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
  3. 3.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland

Personalised recommendations