Advertisement

European Journal of Forest Research

, Volume 136, Issue 3, pp 493–509 | Cite as

Silvicultural strategies for increased timber harvesting in a Central European mountain landscape

  • Christian TemperliEmail author
  • Golo Stadelmann
  • Esther Thürig
  • Peter Brang
Original Paper

Abstract

The demand for wood as construction material, renewable source for energy and feedstock for chemicals is expected to increase. However, timber increments are currently only partly harvested in many European mountain regions, which may lead to supply shortages for local timber industries, decreases in forest resistance to disturbances and functioning as protection from gravitational hazards. Using an inventory-based forest simulator, we evaluated scenarios to increase wood mobilization in the 7105-km2 Swiss canton of Grisons for the period 2007–2106. Scenarios varied with respect to landscape-scale harvesting amounts and silvicultural strategies (low vs. high stand-scale treatment intensity) and accounted for regulations and incentives for protection forest management. With 50 and 100% increases of harvests, the current average growing stock of 319 m3 ha−1 was simulated to be reduced by 12 and 33%, respectively, until 2106 in protection forests of Northern Grisons, where management is prioritized due to subsidies. Outside protection forests and in Southern Grisons, growing stock was simulated to continually increase, which led to divergent developments in forest structure in- and outside protection forests and in the Northern and Southern Grisons. The effect of silvicultural strategies on simulated forest structure was small compared to the effect of future harvesting levels. We discuss opportunities and threats of decreasing management activities outside protection forests and advocate for incentives to promote natural regeneration also outside protection forests to safeguard long-term forest stability.

Keywords

Empirical forest model MASSIMO Forest inventory European Alps Protection forest Timber mobilization Scenario analysis 

Notes

Acknowledgements

We thank Riet Gordon, Office of Forest and Natural Hazards of the Canton of Grisons, for his guidance during the development of management scenarios and critical assessments of simulation results. This research was funded by the Swiss National Science Foundation’s 66th National Research Program (Grant No. 4066-40_136711).

Supplementary material

10342_2017_1048_MOESM1_ESM.docx (378 kb)
Supplementary material 1 (DOCX 378 kb)

References

  1. Abegg M, Brändli U-B, Cioldi F (2014) Fourth national forest inventory—result tables and maps on the Internet for the NFI 2009–2013 (NFI4b). www.lfi.ch 28 Oct 2015
  2. Baier R, Meyer J, Göttlein A (2005) Regeneration niches of Norway spruce (Picea abies [L.] Karst.) saplings in small canopy gaps in mixed mountain forests of the Bavarian Limestone Alps. Eur J For Res 126:11–22. doi: 10.1007/s10342-005-0091-5 CrossRefGoogle Scholar
  3. Barreiro S, Schelhaas M-J, Kändler G et al (2016) Overview of methods and tools for evaluating future woody biomass availability in European countries. Ann For Sci. doi: 10.1007/s13595-016-0564-3 Google Scholar
  4. Bebi P, Kulakowski D, Rixen C (2009) Snow avalanche disturbances in forest ecosystems—state of research and implications for management. For Ecol Manag 257:1883–1892. doi: 10.1016/j.foreco.2009.01.050 CrossRefGoogle Scholar
  5. Bigler C, Braker OU, Bugmann H et al (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343. doi: 10.1007/s10021-005-0126-2 CrossRefGoogle Scholar
  6. Bigot C, Dorren LKA, Berger F (2008) Quantifying the protective function of a forest against rockfall for past, present and future scenarios using two modelling approaches. Nat Hazards 49:99–111. doi: 10.1007/s11069-008-9280-0 CrossRefGoogle Scholar
  7. Brändli U-B (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL; Bundesamt für Umwelt, BAFU, Birmensdorf, BernGoogle Scholar
  8. Brang P, Schönenberger W, Bachofen H et al (2004) Schutzwalddynamik unter Störungen und Eingriffen: Auf dem Weg zu einer systemischen Sicht. Eidg Forschungsanstalt WSL Forum Für Wissen 55–66Google Scholar
  9. Brang P, Schönenberger W, Frehner M et al (2006) Management of protection forests in the European Alps: an overview. For Snow Landsc Res 80:23–44Google Scholar
  10. Brauner M, Weinmeister W, Agner P et al (2005) Forest management decision support for evaluating forest protection effects against rockfall. For Ecol Manag 207:75–85. doi: 10.1016/j.foreco.2004.10.018 CrossRefGoogle Scholar
  11. Brůna J, Wild J, Svoboda M et al (2013) Impacts and underlying factors of landscape-scale, historical disturbance of mountain forest identified using archival documents. For Ecol Manag 305:294–306. doi: 10.1016/j.foreco.2013.06.017 CrossRefGoogle Scholar
  12. Bürgi P, Pauli B (2013) Ansätze zur Senkung der Holzerntekosten in der Schweiz. Schweiz Z Forstwes 164:148–157. doi: 10.3188/szf.2013.0148 CrossRefGoogle Scholar
  13. Bürgi P, Pauli B, Peter L et al (2010) Rundholzmarkt Graubünden. Handlungsempfehlungen zur Erhöhung des Angebots von sägefähigem Rundholz im Kanton Graubünden. 227Google Scholar
  14. Burschel P, Huss J (1997) Grundriss des Waldbaus: ein Leitfaden für Studium und Praxis, 2nd ed. PareyGoogle Scholar
  15. Camin P, Cioldi F, Röösli B (2015) Growing stock. Forest report 2015 condition and use Swiss forest. Swiss Federal Office for the Environment FOEN, Bern, and Swiss Federal Institute for Forest, Snow and Landscape Reseach WSL, Birmensdorf, pp 32–33Google Scholar
  16. Castagneri D, Vacchiano G, Lingua E, Motta R (2008) Analysis of intraspecific competition in two subalpine Norway spruce (Picea abies (L.) Karst.) stands in Paneveggio (Trento, Italy). For Ecol Manag 255:651–659. doi: 10.1016/j.foreco.2007.09.041 CrossRefGoogle Scholar
  17. Cordonnier T, Courbaud B, Berger F, Franc A (2008) Permanence of resilience and protection efficiency in mountain Norway spruce forest stands: a simulation study. For Ecol Manag 256:347–354. doi: 10.1016/j.foreco.2008.04.028 CrossRefGoogle Scholar
  18. DeRose RJ, Long JN (2014) Resistance and resilience: a conceptual framework for silviculture. For Sci 60:1205–1212Google Scholar
  19. Didion M, Kupferschmid AD, Bugmann H (2009) Long-term effects of ungulate browsing on forest composition and structure. For Ecol Manag 258:S44–S55CrossRefGoogle Scholar
  20. Didion M, Kupferschmid A, Wolf A, Bugmann H (2011) Ungulate herbivory modifies the effects of climate change on mountain forests. Clim Change 109:647–669. doi: 10.1007/s10584-011-0054-4 CrossRefGoogle Scholar
  21. Dodoo A, Gustavsson L, Sathre R (2012) Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building. Appl Energy 92:462–472. doi: 10.1016/j.apenergy.2011.11.017 CrossRefGoogle Scholar
  22. Dorren LKA, Berger F, le Hir C et al (2005) Mechanisms, effects and management implications of rockfall in forests. For Ecol Manag 215:183–195. doi: 10.1016/j.foreco.2005.05.012 CrossRefGoogle Scholar
  23. Dorren L, Berger F, Frehner M et al (2015) Das neue NaiS-Anforderungsprofil Steinschlag. Schweiz Z Forstwes 166:16–23. doi: 10.3188/szf.2015.0016 CrossRefGoogle Scholar
  24. Eastaugh CS, Hasenauer H (2014) Deriving forest fire ignition risk with biogeochemical process modelling. Environ Model Softw 55:132–142. doi: 10.1016/j.envsoft.2014.01.018 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, StuttgartGoogle Scholar
  26. Erni V, Frutig F (2005) Vorkalkulation in der voll mechanisierten Holzernte. Wald Holz 1:55–57Google Scholar
  27. Etzold S, Waldner P, Thimonier A et al (2014) Tree growth in Swiss forests between 1995 and 2010 in relation to climate and stand conditions: Recent disturbances matter. For Ecol Manag 311:41–55. doi: 10.1016/j.foreco.2013.05.040 CrossRefGoogle Scholar
  28. Federal Office for the Environment (2013) Waldpolitik 2020. Visionen, Ziele und Massnahmen für eine nachhaltige Bewirtschaftung des Schweizer Waldes. Bundesamt für Umwelt, BernGoogle Scholar
  29. Ferranti F (2014) Energy wood: a challenge for European forests. Potentials, environmental implications, policy integration and related conflicts. EFI technical report 95, European Forest InstituteGoogle Scholar
  30. Fischer C, Camin P (2015) Timber use and increment. Forest report 2015 condition and use Swiss forest. Swiss Federal Office for the Environment FOEN, Bern, and Swiss Federal Institute for Forest, Snow and Landscape Reseach WSL, Birmensdorf, pp 60–61Google Scholar
  31. Foglar-Deinhardstein A, Piribauer V-C, Prem J (2015) Nachhaltige Waldwirtschaft in Österreich. Österreichischer Waldbericht 2015. Republik Österreich, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, WienGoogle Scholar
  32. Forest Europe, UNECE, FAO (2011) State of Europe’s forests 2011. Status and trends in sustainable forest management in Europe. In: Ministerial conference on the protection of forests in Europe, OsloGoogle Scholar
  33. Frehner M, Wasser B, Schwitter R (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald. Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfuntion. Bundesamt für Umwelt, Wald und Landschaft (BUWAL)Google Scholar
  34. Frutig F, Holm S, Lemm R et al (2015) Kalkulation von Holzerntearbeiten: Das Produktivitätsmodell HeProMo. www.waldwissen.net
  35. Hofer P, Altwegg J, Hässig J et al (2011) Holznutzungspotentiale im Schweizer Wald. Auswertung der Nutzungsszenarien und Waldwachstumsentwicklung. 80Google Scholar
  36. Kapeller S, Lexer MJ, Geburek T et al (2012) Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate. For Ecol Manag 271:46–57. doi: 10.1016/j.foreco.2012.01.039 CrossRefGoogle Scholar
  37. Kaufmann E (2001a) Prognosis and management scenarios. In: Brassel P, Lischke H (eds) Swiss national forest inventory methods models second assess. Swiss Federal Research Institute WSL, Birmensdorf, pp 197–206Google Scholar
  38. Kaufmann E (2001b) Estimation of standing timber, growth and cut. In: Brassel P, Lischke H (eds) Swiss national forest inventory methods models second assess. Swiss Federal Research Institute WSL, Birmensdorf, pp 162–197Google Scholar
  39. Kaufmann E (2011) Nachhaltiges Holzproduktionspotenzial im Schweizer Wald. Schweiz Z Forstwes 162:300–311. doi: 10.3188/szf.2011.0300 CrossRefGoogle Scholar
  40. Kautz M, Dworschak K, Gruppe A, Schopf R (2011) Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions. For Ecol Manag 262:598–608. doi: 10.1016/j.foreco.2011.04.023 CrossRefGoogle Scholar
  41. Kläy M (2015) Economic situation of forest enterprises. Forest report 2015 condition and use Swiss forest. Swiss Federal Office for the Environment FOEN, Bern, and Swiss Federal Institute for Forest, Snow and Landscape Reseach WSL, Birmensdorf, pp 106–107Google Scholar
  42. Köhl M (2001) Inventory concept NFI2. In: Brassel P, Lischke H (eds) Swiss national forest inventory methods models second assess. Swiss Federal Research Institute WSL, Birmensdorf, pp 19–46Google Scholar
  43. Kraft U (2015) Wood end use. Forest report 2015 condition use Swiss forest. Swiss Federal Office for the Environment FOEN, Bern, and Swiss Federal Institute for Forest, Snow and Landscape Reseach WSL, Birmensdorf, pp 114–115Google Scholar
  44. Krumm F, Kulakowski D, Risch A et al (2012) Stem exclusion and mortality in unmanaged subalpine forests of the Swiss Alps. Eur J For Res 131:1571–1583. doi: 10.1007/s10342-012-0625-6 CrossRefGoogle Scholar
  45. Kupferschmid AD, Bugmann H (2005) Predicting decay and ground vegetation development in Picea abies snag stands. Plant Ecol 179:247–268. doi: 10.1007/s11258-005-0903-1 CrossRefGoogle Scholar
  46. Lassauce A, Paillet Y, Jactel H, Bouget C (2011) Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol Indic 11:1027–1039. doi: 10.1016/j.ecolind.2011.02.004 CrossRefGoogle Scholar
  47. Lauri P, Kallio AMI, Schneider UA (2012) Price of CO2 emissions and use of wood in Europe. For Policy Econ 15:123–131. doi: 10.1016/j.forpol.2011.10.003 CrossRefGoogle Scholar
  48. Lévesque M, Saurer M, Siegwolf R et al (2013) Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob Change Biol 19:3184–3199. doi: 10.1111/gcb.12268 CrossRefGoogle Scholar
  49. Maroschek M, Rammer W, Lexer MJ (2014) Using a novel assessment framework to evaluate protective functions and timber production in Austrian mountain forests under climate change. Reg Environ Change 15:1543–1555. doi: 10.1007/s10113-014-0691-z CrossRefGoogle Scholar
  50. Nabuurs G-J, Delacote P, Ellison D et al (2015) A new role for forests and the forest sector in the EU post-2020 climate targets. From Science to Policy 2. European Forest InstituteGoogle Scholar
  51. Økland B, Nikolov C, Krokene P, Vakula J (2016) Transition from windfall- to patch-driven outbreak dynamics of the spruce bark beetle Ips typographus. For Ecol Manag 363:63–73. doi: 10.1016/j.foreco.2015.12.007 CrossRefGoogle Scholar
  52. Pasztor F, Matulla C, Rammer W, Lexer MJ (2014) Drivers of the bark beetle disturbance regime in Alpine forests in Austria. For Ecol Manag 318:349–358. doi: 10.1016/j.foreco.2014.01.044 CrossRefGoogle Scholar
  53. Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen (1496–1995). Verlag P. Haupt, BernGoogle Scholar
  54. Pretzsch H, Grote R, Reineking B et al (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087. doi: 10.1093/aob/mcm246 CrossRefPubMedGoogle Scholar
  55. Primicia I, Camarero JJ, Janda P et al (2015) Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. For Ecol Manag 354:77–86. doi: 10.1016/j.foreco.2015.06.034 CrossRefGoogle Scholar
  56. Rammer W, Brauner M, Ruprecht H, Lexer MJ (2015) Evaluating the effects of forest management on rockfall protection and timber production at slope scale. Scand J For Res 30:719–731. doi: 10.1080/02827581.2015.1046911 CrossRefGoogle Scholar
  57. Rasche L, Fahse L, Bugmann H (2013) Key factors affecting the future provision of tree-based forest ecosystem goods and services. Clim Change 118:579–593. doi: 10.1007/s10584-012-0664-5 CrossRefGoogle Scholar
  58. Reyer C, Lasch-Born P, Suckow F et al (2014) Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann For Sci 71:211–225. doi: 10.1007/s13595-013-0306-8 CrossRefGoogle Scholar
  59. Reyer CPO, Bathgate S, Blennow K et al (2017) Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ Res Lett 12:034027. doi: 10.1088/1748-9326/aa5ef1 CrossRefGoogle Scholar
  60. Rigling A, Frank D, Dobbertin M et al (2014) Jahrringanalysen entlang von Höhengradienten. In: Wohlgemuth T, Rigling A (eds) Kurz- Langfristige Auswirkungen Klimas Auf Wäld. Im Churer Rheintal. WSL Berichte 17, Eidg. Forschungsanstalt WSL, Birmensdorf, pp 20–40Google Scholar
  61. Rohner B, Weber P, Thürig E (2016) Bridging tree rings and forest inventories: how climate effects on spruce and beech growth aggregate over time. For Ecol Manag 360:159–169. doi: 10.1016/j.foreco.2015.10.022 CrossRefGoogle Scholar
  62. Royo AA, Carson WP (2006) On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J For Res 36:1345–1362. doi: 10.1139/x06-025 CrossRefGoogle Scholar
  63. Schmid U, Bircher N, Bugmann H (2015) Naturnaher und multifunktionaler Waldbau in Zeiten des Klimawandels – eine Fallstudie. Schweiz Z Forstwes 166:314–324. doi: 10.3188/szf.2015.0314 CrossRefGoogle Scholar
  64. Seidl R, Rammer W, Lexer MJ (2011a) Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Can J For Res 41:694–706. doi: 10.1139/x10-235 CrossRefGoogle Scholar
  65. Seidl R, Rammer W, Lexer MJ (2011b) Climate change vulnerability of sustainable forest management in the Eastern Alps. Clim Change 106:225–254. doi: 10.1007/s10584-010-9899-1 CrossRefGoogle Scholar
  66. Seidl R, Schelhaas M-J, Lexer MJ (2011c) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol 17:2842–2852. doi: 10.1111/j.1365-2486.2011.02452.x CrossRefGoogle Scholar
  67. Selva (2016) Rundholzpreise Graubünden. Bündner Waldwirtschaftsverband. http://www.selva-gr.ch. Accessed 24 Mar 2016
  68. Stadelmann G, Bugmann H, Wermelinger B, Bigler C (2014) Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. For Ecol Manag 318:167–174. doi: 10.1016/j.foreco.2014.01.022 CrossRefGoogle Scholar
  69. Stadelmann G, Temperli C, Conedera M et al (2015) Möglichkeiten zur Holzmobilisierung im Tessiner Kastaniengürtel. Schweiz Z Forstwes 166:291–298. doi: 10.3188/szf.2015.0291 CrossRefGoogle Scholar
  70. Stadelmann G, Herold A, Didion M et al (2016) Holzerntepotenzial im Schweizer Wald: simulation von Bewirtschaftungsszenarien. Schweiz Z Forstwes 167:152–161. doi: 10.3188/szf.2016.0152 CrossRefGoogle Scholar
  71. Stierlin HR, Zinggeler J (2001) Terrestrial inventory. In: Brassel P, Lischke H (eds) Swiss national forest inventory methods models second assess. Swiss Federal Research Institute WSL, Birmensdorf, pp 65–87Google Scholar
  72. Streit K, Wunder J, Brang P (2009) Slit-shaped gaps are a successful silvicultural technique to promote Picea abies regeneration in mountain forests of the Swiss Alps. For Ecol Manag. doi: 10.1016/j.foreco.2008.12.018 Google Scholar
  73. Temperli C, Bugmann H, Elkin C (2013a) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402. doi: 10.1890/12-1503.1 CrossRefGoogle Scholar
  74. Temperli C, Zell J, Bugmann H, Elkin C (2013b) Sensitivity of ecosystem goods and services projections of a forest landscape model to initialization data. Landsc Ecol 28:1337–1352. doi: 10.1007/s10980-013-9882-0 CrossRefGoogle Scholar
  75. Thom D, Rammer W, Seidl R (2017) Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob Change Biol 23:269–282. doi: 10.1111/gcb.13506 CrossRefGoogle Scholar
  76. Thürig E, Kaufmann E (2010) Increasing carbon sinks through forest management: a model-based comparison for Switzerland with its Eastern Plateau and Eastern Alps. Eur J For Res 129:563–572. doi: 10.1007/s10342-010-0354-7 CrossRefGoogle Scholar
  77. Thürig E, Kaufmann E, Frisullo R, Bugmann H (2005a) Evaluation of the growth function of an empirical forest scenario model. For Ecol Manag 204:53–68. doi: 10.1016/j.foreco.2004.07.070 CrossRefGoogle Scholar
  78. Thürig E, Palosuo T, Bucher J, Kaufmann E (2005b) The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. For Ecol Manag 210:337–350. doi: 10.1016/j.foreco.2005.02.030 CrossRefGoogle Scholar
  79. Traub B, Meile R, Speich S, Rösler E (2017) The data storage and analysis system of the Swiss National Forest Inventory. Comput Electron Agric 132:97–107. doi: 10.1016/j.compag.2016.11.016 CrossRefGoogle Scholar
  80. Usbeck T, Wohlgemuth T, Dobbertin M et al (2010) Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric For Meteorol 150:47–55. doi: 10.1016/j.agrformet.2009.08.010 CrossRefGoogle Scholar
  81. Vanoni M, Bugmann H, Nötzli M, Bigler C (2016) Quantifying the effects of drought on abrupt growth decreases of major tree species in Switzerland. Ecol Evol 6:3555–3570. doi: 10.1002/ece3.2146 CrossRefGoogle Scholar
  82. Wastl C, Schunk C, Leuchner M et al (2012) Recent climate change: long-term trends in meteorological forest fire danger in the Alps. Agric For Meteorol 162–163:1–13. doi: 10.1016/j.agrformet.2012.04.001 CrossRefGoogle Scholar
  83. Wehrli A, Dorren LKA, Berger F et al (2006a) Modelling long-term effects of forest dynamics on the protective effect against rockfall. For Snow Landsc Res 80:57–76Google Scholar
  84. Wehrli A, Weisberg PJ, Schönenberger W et al (2006b) Improving the establishment submodel of a forest patch model to assess the long-term protective effect of mountain forests. Eur J For Res 126:131–145. doi: 10.1007/s10342-006-0142-6 CrossRefGoogle Scholar
  85. Wermelinger B, Schneider Mathis D (2014) Befallsrisiko von Waldföhren durch Borkenkäfer. In: Wohlgemuth T, Rigling A (eds) Kurz- Langfristige Auswirkungen Klimas Auf Wäld. Im Churer Rheintal. WSL Berichte 17, Eidg. Forschungsanstalt WSL, Birmensdorf, pp 49–57Google Scholar
  86. Werner F, Taverna R, Hofer P et al (2010) National and global greenhouse gas dynamics of different forest management and wood use scenarios: a model-based assessment. Environ Sci Policy 13:72–85. doi: 10.1016/j.envsci.2009.10.004 CrossRefGoogle Scholar
  87. Wilhelm C, Kalberer M, Meier A (2011) Neuer Schutzwald Graubünden 2012. Bündner Wald 1:88–95Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland

Personalised recommendations