European Journal of Forest Research

, Volume 136, Issue 3, pp 481–492 | Cite as

Exploring range shifts of contrasting tree species across a bioclimatic transition zone

  • Laura HernándezEmail author
  • Rut Sánchez de Dios
  • Fernando Montes
  • Helios Sainz-Ollero
  • Isabel Cañellas
Original Paper


Bioclimatic transition zones are supposed to encompass sensitive areas to global change effects on forest ecosystems. In this study, we attempt to detect shifts in the ranges of contrasting Iberian tree species in the submediterranean transition zone in Navarra, northern Spain. These shifts are analysed in the context of a significant increase in temperature over recent decades along with moderate land use changes. Data from national forest inventories (1971 and 2010) are compared through universal kriging (UK) and block kriging models to assess the shifts in the ranges of Quercus subpyrenaica, Quercus ilex, Pinus sylvestris and Fagus sylvatica. UK results predicted an increase in the presence probability of the four target species for the whole Navarra region. However, in the submediterranean zone, the presence probability of Q. subpyrenaica, P. sylvestris and F. sylvatica shows a shrinking trend, whereas Q. ilex is expanding its range, supporting a previous hypothesis of a “mediterranization” of this bioclimatic transition region. These trends are concomitant with recent elevational shift patterns towards higher elevations in the case of Q. subpyrenaica, P. sylvestris and F. sylvatica in the transition zone. Moreover, the expected increase in species richness as a consequence of geographical shifts and vegetation recovery is identified. The moderate human influence detected in the study area confirms the major role of climate warming as driver of species range shifts over the period. The results of this study highlight the suitability of bioclimatic transition zones for monitoring the effects of global change on natural ecosystems, providing evidences of the complex mechanisms affecting the distribution of forests.


Submediterranean zone Mediterranization Shifts Land use changes Climate warming European tree species 



The authors thank the DGB of the MAGRAMA for kindly providing access to the entire NFI data sets in the frame of the Agreement EG-13-072. We also thank TRACASA for allowing us to retrieve information from the LUC map for the Navarra region, to E. Serralle and A. Bachiller for their technical support in georeferencing the NFI1 plots, to Genfored from CIFOR-INIA for providing SIG data files and to A. Collins for the careful editing of the English. The authors are also grateful to an anonymous reviewer for her/his helpful suggestions on the draft of this article. This article is the result of collaboration between L. Hernández, F. Montes and I. Cañellas with R. Sánchez de Dios and H. Sainz-Ollero within the framework of the AGL2010-21153.00.01 project aimed at integrating the response of forest ecosystems to global change in transition areas at different scales.

Supplementary material

10342_2017_1047_MOESM1_ESM.docx (428 kb)
Supplementary material 1 (DOCX 427 kb)


  1. Améztegui A, Brotons L, Coll L (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob Ecol Biogeogr 19(5):632–641Google Scholar
  2. Améztegui A, Coll L, Brotons L, Ninot JM (2016) Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Glob Ecol Biogeogr 25(3):263–273CrossRefGoogle Scholar
  3. Ballings M, Van den Poel D (2013) Threshold independent performance measures for probabilistic classification algorithms (forthcoming) Google Scholar
  4. Benito-Garzón M, Sánchez de Dios R, Sainz-Ollero H (2008) Effects of climate change on the distribution of Iberian forests. Appl Veg Sci 11:169–178CrossRefGoogle Scholar
  5. Callaghan TV, Jonasson C, Thierfelder T, Yang Z, Hedenås H, Johansson M, Sloan VL (2013) Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers. Philos Trans R Soc B 368(1624):20120488CrossRefGoogle Scholar
  6. Costa M, Morla C, Sainz-Ollero H (1997) Los bosques ibéricos. Una interpretación geobotánica, PlanetaGoogle Scholar
  7. Cressie NAC (1993) Statistics for spatial data. Wiley, New YorkGoogle Scholar
  8. Crimmins SM, Dobrowski SZ, Greenberg JA, Abatzoglou JT, Mynsberge AR (2011) Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331:324–327CrossRefPubMedGoogle Scholar
  9. Di Castri F, Hansen AJ (eds) (1992) The environment and development crisis as determinants of landscape dynamics. In: Landscape boundaries. Springer, New YorkGoogle Scholar
  10. Dormann C, McPherson MJ, Araújo B, Bivand M, Bolliger RJ, Carl G, Kühn I (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30(5):609–628CrossRefGoogle Scholar
  11. FAO (2015) Food and Agriculture Organization of the United Nations. Global forest resources assessment 2015: main report. How are the world’s forests changing?
  12. Garcia-Ruiz JM, Lasanta T, Ruiz-Flano P, Ortigosa L, White S, González C, Martí C (1996) Land-use changes and sustainable development in mountain areas: a case study in the Spanish Pyrenees. Landsc Ecol 11(5):267–277CrossRefGoogle Scholar
  13. Gosz JR (1992) Ecological functions in a biome transition zone: translating local responses to broad scale dynamics. In: Hansen AJ, De Castri F (eds) Landscape boundaries. Springer, New YorkGoogle Scholar
  14. Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Alonso JLB, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Chang 2(2):111–115CrossRefGoogle Scholar
  15. Hernández L, Cañellas I, Alberdi I, Torres I, Montes F (2014) Assessing changes in species distribution from sequential large scale forest inventories. Ann For Sci 71:161–171CrossRefGoogle Scholar
  16. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15(2):56–61CrossRefGoogle Scholar
  17. Hutchinson GE (1957) Population studies—animal ecology and demography—concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  18. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change.
  19. Kappelle M, Van Vuuren MMI, Baas P (1999) Effects of climate change on biodiversity: a review and identification of key research issues. Biodivers Conserv 8:1383–1397CrossRefGoogle Scholar
  20. Kouba Y, Camarero JJ, Alados CL (2012) Roles of land-use and climate change on the establishment and regeneration dynamics of Mediterranean semi-deciduous oak forests. For Ecol Manag 274:143–150CrossRefGoogle Scholar
  21. Lappi J (2001) Forest inventory of small areas combining the calibration estimator and a spatial model. Can J For Res 31(9):1551–1560CrossRefGoogle Scholar
  22. Lenoir J, Svenning JC (2013) Latitudinal and elevational range shifts under contemporary climate change. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, Denmark, pp 599–611Google Scholar
  23. Lenoir J, Svenning JC (2015) Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38:15–28CrossRefGoogle Scholar
  24. Lenoir J, Gégout JC, Pierrat JC et al (2009) Differences between tree species seedling and adult elevational distribution in mountain forests during the recent warm period (1986–2006). Ecography 32:765–777CrossRefGoogle Scholar
  25. Lenoir J, Gégout JC, Guisan A et al (2010) Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33(2):295–303Google Scholar
  26. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  27. Lobo JM, Jiménez-Valverde A, Hortal J (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography 33(1):103–114CrossRefGoogle Scholar
  28. Maldonado FJ, Sainz Ollero H, Sánchez de Dios R, Xandri P (2001) Distribución y estado de conservación de los bosques españoles: un análisis de las carencias en la red de territorios protegidos. In: Plana Bach E (ed) Camprodon i Subirachs J. Conservación de la biodiversidad y gestión forestal. Universitat de Barcelona, BarcelonaGoogle Scholar
  29. Montes F, Ledo A (2010) Incorporating environmental and geographical information in forest data analysis: a new fitting approach for universal kriging. Can J For Res 40:1852–1861CrossRefGoogle Scholar
  30. Ohlemüller R, Gritti ES, Sykes MT, Thomas CD (2006) Quantifying components of risk for European woody species under climate change. Glob Chang Biol 12(9):1788–1799CrossRefGoogle Scholar
  31. Ozenda P (1994) Végétation du continent européen. Delachaux et Niestlé, ParisGoogle Scholar
  32. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245CrossRefGoogle Scholar
  33. Peguero-Pina JJ, Sancho-Knapik D, Martín P, Saz MÁ, Gea-Izquierdo G, Cañellas I, Gil-Pelegrín E (2015) Evidence of vulnerability segmentation in a deciduous Mediterranean oak (Quercus subpyrenaica EH del Villar). Trees 29(6):1917–1927CrossRefGoogle Scholar
  34. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9(2):131–140CrossRefGoogle Scholar
  35. Risser PG (1995) The status of the science examining ecotones. Bioscience 45:318–325CrossRefGoogle Scholar
  36. Ruiz-Labourdette D, Nogués Bravo D, Ollero HS, Schmitz MF, Pineda FD (2011) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J Biogeogr 39:162–176CrossRefGoogle Scholar
  37. Ruiz-Labourdette D, Schmitz MF, Pineda FD (2013) Changes in tree species composition in Mediterranean Mountains under climate change: indicators for conservation planning. Ecol Indic 24:310–323CrossRefGoogle Scholar
  38. Sánchez de Dios R, Benito-Garzón M, Sainz-Ollero H (2006) Hybrid zones between two European oaks: a plant community approach. Plant Ecol 187:109–125CrossRefGoogle Scholar
  39. Sánchez de Dios RS, Benito-Garzón M, Sainz-Ollero H (2009) Present and future extension of the Iberian Submediterranean territories as determined from the distribution of marcescent oaks. Plant Ecol 204:189–205CrossRefGoogle Scholar
  40. Thuiller W, Lavorel S, Auraújo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357CrossRefGoogle Scholar
  41. Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol 9(3):137–152CrossRefGoogle Scholar
  42. Tracasa (2008) Mapa de cambios (MCA 56-08). Ocupación del suelo en Navarra: desarrollos realizados y cambios ocurridos en los últimos 50 años. Sección de Evaluación de Recursos Agrarios del Departamento de Desarrollo Rural y Medio Ambiente del Gobierno de Navarra, PamplonaGoogle Scholar
  43. Urbieta IR, García LV, Zavala MA, Marañón T (2011) Mediterranean pine and oak distribution in southern Spain: is there a mismatch between regeneration and adult distribution? J Veg Sci 22(1):18–31CrossRefGoogle Scholar
  44. Urli M, Delzon S, Eyermann A, Couallier V, García-Valdés R, Zavala MA, Porté AJ (2014) Inferring shifts in tree species distribution using asymmetric distribution curves: a case study in the Iberian mountains. J Veg Sci 25(1):147–159CrossRefGoogle Scholar
  45. Valbuena-Carabaña M, de Heredia UL, Fuentes-Utrilla P, González-Doncel I, Gil L (2010) Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palynol 162(3):492–506CrossRefGoogle Scholar
  46. Valladares F, Peñuelas J, de Luis Calabuig E (2004) “Ecosistemas terrestres”. In: En Moreno JM (ed) Evaluación de los impactos del cambio climático en España. Ministerio de Medio Ambiente, Madrid, pp 65–112Google Scholar
  47. Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  48. Walther GR, Berger S, Sykes MT (2005) An ecological ‘footprint’ of climate change. Proc R Soc Lond B Biol Sci 272:1427–1432CrossRefGoogle Scholar
  49. WMO (2013) The global climate 2001–2010: a decade of climate extremes—summary report. World Meteorological Organisation, GenevaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.INIA-CIFORMadridSpain
  2. 2.Departamento de Biología Vegetal I, Facultad de Ciencias BiológicasUniversidad Complutense de MadridMadridSpain
  3. 3.Unidad de Botánica, Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  4. 4.E.T.S.I. MontesUniversidad Politécnica de MadridMadridSpain

Personalised recommendations