European Journal of Forest Research

, Volume 136, Issue 3, pp 457–469 | Cite as

Determinants of mortality in a mixed broad-leaved Korean pine forest in northeastern China

  • Chunyu Fan
  • Lingzhao Tan
  • Peng Zhang
  • Jingjing Liang
  • Chunyu ZhangEmail author
  • Juan Wang
  • Xiuhai Zhao
  • Klaus von Gadow
Original Paper


Empirical analyses of forest dynamics are important for understanding various ecological processes underlying particular forest communities, among which tree mortality is considered a key process driven by many local factors. To evaluate the effects of tree size, as well as biotic and abiotic factors on tree mortality, we compared species-specific mortality rates in a 21-ha temperate multi-species natural forest in northeastern China, where all trees had been mapped. Our study shows that the mortality rates are highly variable among the different tree species and the influence of habitat preference on the mortality rate of a species across habitats was insignificant. Using generalized linear mixed-effects models, we further found that among the drivers of tree survival, tree size had the strongest effect across different species. There are significant negative relationships between the basal area of conspecific neighbors and tree survival at the community level across almost all the guilds. Regarding abiotic factors, elevation had a greater effect on tree survival than other topographic variables did. Abiotic factors affected shrubs more than tall canopy species in terms of survival rate. Our study suggests that tree size, density-dependent effects and niche partitioning contribute to the regulation of survival pattern of temperate forest communities, but the relative importance of these factors varies greatly among guilds and species. This study has shown that it is essential to consider the relative importance of both, intrinsic (tree size) and extrinsic (biotic and abiotic) factors in analyzing tree mortality.


Forest dynamics Tree mortality Density dependence Niche partitioning 



This study was funded by the Program of National Natural Science Foundation of China (31670643; 31600480).

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Angert AL (2006) Demography of central and marginal populations of monkeyflowers (Mimulus cardinalis and M. lewisii). Ecology 87:2014–2025. doi: 10.1890/0012-9658 CrossRefPubMedGoogle Scholar
  2. Baraloto C, Forget PM, Goldberg DE (2005) Seed mass, seedling size and neotropical tree seedling establishment. J Ecol 93:1156–1166. doi: 10.1111/j.1365-2745.2005.01041.x CrossRefGoogle Scholar
  3. Bolker BM, Brooks ME, Clark CG, Geange SW, Poulsen JR, Stevens MHH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi: 10.1016/j.tree.2008.10.008 CrossRefPubMedGoogle Scholar
  4. Bugmann H (2001) A comparative analysis of forest dynamics in the Swiss Alps and the Colorado Front Range. Forest Ecol Manag 145:43–55. doi: 10.1016/S0378-1127(00)00573-9 CrossRefGoogle Scholar
  5. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  6. Canham CD, Papaik MJ, Uriarte M, McWilliams WH, Jenkins JC, Twery MJ (2006) Neighborhood analyses of canopy tree competition along environmental gradients in New England forests. Ecol Appl 16:540–554. doi:10.1890/1051-0761(2006)016[0540:NAOCTC]2.0.CO;2CrossRefPubMedGoogle Scholar
  7. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi: 10.1038/nature11148 CrossRefPubMedGoogle Scholar
  8. Comita LS, Uriarte M, Thompson J, Jonckheere I, Canham CD, Zimmerman JK (2009) Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forest. J Ecol 97:1346–1359. doi: 10.1111/j.1365-2745.2009.01551.x CrossRefGoogle Scholar
  9. Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329:330–332. doi: 10.1126/science.1190772 CrossRefPubMedGoogle Scholar
  10. Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, Beckman N, Zhu Y (2014) Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance-and density-dependent seed and seedling survival. J Ecol 102:845–856. doi: 10.1111/1365-2745.12232 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Condit R, Ashton PS, Manokaran N, LaFrankie JV, Hubbell SP, Foster RB (1999) Dynamics of the forest communities at Pasoh and Barro Colorado: comparing two 50-ha plots. Philos Trans R Soc B 354:1739–1748. doi: 10.1098/rstb.1999.0517 CrossRefGoogle Scholar
  12. Coomes DA, Allen RB (2007a) Mortality and tree-size distributions in natural mixed-age forests. J Ecol 95:27–40. doi: 10.1111/j.1365-2745.2006.01179.x CrossRefGoogle Scholar
  13. Coomes DA, Allen RB (2007b) Effects of size, competition and altitude on tree growth. J Ecol 95:1084–1097. doi: 10.1111/j.1365-2745.2007.01280.x CrossRefGoogle Scholar
  14. Das A, Battles J, Mantgem PJ, Stephenson NL (2008) Spatial elements of mortality risk in old-growth forest. Ecology 89:1744–1756. doi: 10.1890/07-0524.1 CrossRefPubMedGoogle Scholar
  15. Eid T, Tuhus E (2001) Models for individual tree mortality in Norway. Forest Ecol Manag 154:69–84. doi: 10.1016/S0378-1127(00)00634-4 CrossRefGoogle Scholar
  16. Fortin M, Bédard S, DeBlois J, Meunier S (2008) Predicting individual tree mortality in northern hardwood stands under uneven-aged management in southern Québec, Canada. Ann Forest Sci 65:205. doi: 10.1051/forest:2007088 CrossRefGoogle Scholar
  17. Gadow KV, Kotzé H (2014) Tree survival and maximum density of planted forests-observations from South African Spacing Studies. Forest Ecosyst 1:1–9. doi: 10.1186/s40663-014-0021-4 CrossRefGoogle Scholar
  18. González JGÁ, Dorado FC, González ADR, Sánchez CAL, Gadow KV (2004) A two-step mortality model for even-aged stands of Pinus radiata d. don in galicia (northwestern spain). Ann Forest Sci 61:439–448CrossRefGoogle Scholar
  19. Gracia M, Montane F, Pique J, Retana J (2007) Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). Forest Ecol Manag 24:391–397. doi: 10.1016/j.foreco.2007.01.056 CrossRefGoogle Scholar
  20. Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50 ha neotropical forest plot. J Ecol 89:947–959. doi: 10.1111/j.1365-2745.2001.00615.x CrossRefGoogle Scholar
  21. Hosmer DJ, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  22. Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecol Res 16:859–875. doi: 10.1046/j.1440-1703.2001.00445.x CrossRefGoogle Scholar
  23. Hurst JM, Stewart GH, Perry GLW, Wiser SK, Norton DA (2012) Determinants of tree mortality in mixed old-growth Nothofagus forest. Forest Ecol Manag 270:189–199. doi: 10.1016/j.foreco.2012.01.029 CrossRefGoogle Scholar
  24. Iida Y, Poorter L, Sterck F, Kassim AR, Potts MD, Takuya K, Kohyama TS (2014) Linking size-dependent growth and mortality with architectural traits across 145 co-occurring tropical tree species. Ecology 95:353–363. doi: 10.1890/11-2173.1 CrossRefPubMedGoogle Scholar
  25. John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vall Ejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA 104:864–869. doi: 10.1073/pnas.0604666104 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Johnson DJ, Bourg NA, Howe R, Mcshea WJ, Wolf A, Clay K (2014) Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology 95:2493–2503. doi: 10.1890/13-2098.1 CrossRefGoogle Scholar
  27. King DA, Davies SJ, Noor NS (2006) Growth and mortality are related to adult tree size in a Malaysian mixed dipterocarp forest. Forest Ecol Manag 223:152–158. doi: 10.1016/j.foreco.2005.10.066 CrossRefGoogle Scholar
  28. Kunstler G, Coomes DA, Canham CD (2009) Size-dependence of growth and mortality influence the shade tolerance of trees in a lowland temperate rain forest. J Ecol 97:685–695. doi: 10.1111/j.1365-2745.2009.01482.x CrossRefGoogle Scholar
  29. Kyle EH, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89:947–959. doi: 10.1111/j.1365-2745.2001.00615.x CrossRefGoogle Scholar
  30. Lewis SL, Phillips OL, Sheil D, Vinceti B, Baker TR, Brown S, Graham AW, Higuchi N, Hilbert DW, Laurance AW, Lejoly J, Malhi Y, Monteagudo A, Vargas PN, Sonke B, Nur Supardi MN, Terborgh JW, Martinez RV (2004) Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. J Ecol 92:929–944. doi: 10.1111/j.0022-0477.2004.00923.x CrossRefGoogle Scholar
  31. Liang J, Zhou M (2010) A geospatial model of forest dynamics with controlled trend surface. Ecol Model 221:2339–2352. doi: 10.1016/j.ecolmodel.2010.06.016 CrossRefGoogle Scholar
  32. Liang J, Zhou M, Tobin PC, McGuire AD, Reich PB (2015) Biodiversity influences plant productivity through niche–efficiency. Proc Natl Acad Sci 112:5738–5743. doi: 10.1073/pnas.1409853112 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei X, Schelhaas MJ, Lu H, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho F, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science. doi: 10.1126/science.aaf8957 Google Scholar
  34. Lin L, Comita LS, Zheng Z, Cao M (2012) Seasonal differentiation in density-dependent seedling survival in a tropical rain forest. J Ecol 100:905–914. doi: 10.1111/j.1365-2745.2012.01964.x CrossRefGoogle Scholar
  35. Lombardi F, Cocozza C, Lasserre B, Tognetti R, Marchetti M (2011) Dendrochronological assessment of the time since death of dead wood in an old growth Magellan’s beech forest, Navarino Island (Chile). Austral Ecol 36:329–340. doi: 10.1111/j.1442-9993.2010.02154.x CrossRefGoogle Scholar
  36. Lu J (2015) Density dependence and habitat preference shape seedling survival in a subtropical forest in central China. J Plant Ecol 8:568–577. doi: 10.1093/jpe/rtv006 CrossRefGoogle Scholar
  37. Lutz JA, Halpern CB (2006) Tree mortality during early forest development: a long-term study of rates, causes, and consequences. Ecol Monogr 76:257–275. doi:10.1890/0012-9615(2006)076[0257:TMDEFD]2.0.CO;2CrossRefGoogle Scholar
  38. Ma L, Chen C, Shen Y, Wu LF, Huang ZL, Cao HL (2014) Determinants of tree survival at local scale in a sub-tropical forest. Ecol Res 29:69–80. doi: 10.1007/s11284-013-1100-7 CrossRefGoogle Scholar
  39. Mantgem PJV, Stephenson NL, Byrne JC, Daniel LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread Increase of Tree Mortality Rates in the Western United States. Science 323:521–524. doi: 10.1126/science.1165000 CrossRefPubMedGoogle Scholar
  40. Monserud RA, Ledermann T, Sterba H (2004) Are self-thinning constraints needed in a tree-specific mortality model? For Sci 50:848–858Google Scholar
  41. Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms KE, Hart T, Hubbell SP, Itoh A, Kassim AR, LaFrankie JV, Lee HS, Losos E, Makana J, Ohkubo T, Sukumar R, Sun IF, Nur Supardi MN, Tan S, Thompson J, Valencia R, Munoz GV, Wills C, Yamakura T, Chuyong G, Dattaraja HS, Esufali S, Hall P, Hernandez C, Kenfack D, Kiratiprayoon S, Suresh HS, Thomas D, Vallejo MI, Ashton P (2006) Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol Lett 9:575–588. doi: 10.1111/j.1461-0248.2006.00904.x CrossRefPubMedGoogle Scholar
  42. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi: 10.1111/J.2041-210x.2012.00261.X CrossRefGoogle Scholar
  43. Nothdurft A (2013) Spatio-temporal prediction of tree mortality based on long-term sample plots, climate change scenarios and parametric frailty modeling. For Ecol Manag 291:43–54CrossRefGoogle Scholar
  44. Peters HA (2003) Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecol Lett 6:757–765. doi: 10.1046/j.1461-0248.2003.00492.x CrossRefGoogle Scholar
  45. Queenborough SA, Burslem DFRP, Garwood NC, Valencia R (2009) Taxonomic scale-dependence of habitat niche partitioning and biotic neighborhood on survival of tropical tree seedlings. Proc R Soc B 276:4197–4205. doi: 10.1098/rspb.2009.0921 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rees M, Condit R, Crawley M, Pacala S, Tilman D (2001) Long-term studies of vegetation dynamics. Science 293:650–655. doi: 10.1126/science.1062586 CrossRefPubMedGoogle Scholar
  47. Rüger N, Huth A, Hubbell SP, Condit R (2011) Determinants of mortality across a tropical lowland rainforest community. Oikos 120:1047–1056. doi: 10.1111/j.1600-0706.2010.19021.x CrossRefGoogle Scholar
  48. Russo SE, Davies SJ, King DA, Tan S (2005) Soil related performance variation and distributions of tree species in a Bornean rain forest. J Ecol 93:879–889. doi: 10.1111/j.1365-2745.2005.01030.x CrossRefGoogle Scholar
  49. Shen Y, Santiago LS, Ma L, Lin GJ, Lian JY, Cao HL, Ye WH (2013) Forest dynamics of a subtropical monsoon forest in Dinghushan, China: recruitment, mortality and the pace of community change. J Trop Ecol 29:131–145. doi: 10.1017/S0266467413000059 CrossRefGoogle Scholar
  50. Staupendahl K (2011) Modellierung der Uberlebenswahrscheinlichkeit von Waldbestanden mithilfe der neu parametrisierten Weibull-Funktion. Forstarchiv 82:10–19Google Scholar
  51. Staupendahl K, Zucchini W (2011) Schatzung von Uberlebensfunktionen der Hauptbaumarten auf der Basis von Zeitreihendaten der Rheinland-Pfalzischen Waldzustandserhebung. Allgemeine Forst und Jagdzeitung 182:129–134Google Scholar
  52. Stephenson NL, Mantgem PJ (2005) Forest turnover rates follow global and regional patterns of productivity. Ecol Lett 8:524–531. doi: 10.1111/j.1461-0248.2005.00746.x CrossRefPubMedGoogle Scholar
  53. Svenning JC (2002) Crown illumination limits the population growth rate of a neotropical understorey palm (Geonoma macrostachys, Arecaceae). Plant Ecol 159:185–199. doi: 10.1023/A:1015520116260 CrossRefGoogle Scholar
  54. Temesgen H, Mitchell SJ (2005) An individual-tree mortality model for complex stands of southeastern British Columbia. West J Appl Ecol 20:101–109Google Scholar
  55. Thapa R, Burkhart HE, Li J, Hong Y (2016) Modeling clustered survival times of loblolly pine with time-dependent covariates and shared frailties. J Agric Biol Environ St 21:92–110. doi: 10.1007/s13253-015-0217-2 CrossRefGoogle Scholar
  56. Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci 94:1857–1861. doi: 10.1073/pnas.94.5.1857 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Uriarte M, Canham CD, Thompson J, Zimmerman JK (2004) A neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecol Monogr 74:591–614. doi: 10.1890/03-4031 CrossRefGoogle Scholar
  58. Volkov I, Banavar JR, He F, Hubbell SP, Maritan A (2005) Density dependence explains tree species abundance and diversity in tropical forests. Nature 438:658–661. doi: 10.1038/nature04030 CrossRefPubMedGoogle Scholar
  59. Wang XG, Comita LS, Hao ZQ, Davies SJ, Ye J, Lin F, Yuan ZQ (2012) Local-scale drivers of tree survival in a temperate forest. PLoS ONE 7:e29469. doi: 10.1371/journal.pone.0029469 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Weiner J (1990) Asymmetric competition in plant-populations. Trends Ecol Evol 5:360–364. doi: 10.1016/0169-5347(90)90095-U CrossRefPubMedGoogle Scholar
  61. Woods KD (2000) Dynamics in late-successional hemlock-hardwood forests over three decades. Ecology 81:110–126. doi: 10.2307/177138 Google Scholar
  62. Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14CrossRefPubMedGoogle Scholar
  63. Wu H, Franklin SB, Liu J, Lu ZJ (2017) Relative importance of density dependence and topography on tree mortality in a subtropical mountain forest. Forest Ecol Manag 384:169–179. doi: 10.1016/j.foreco.2016.10.049 CrossRefGoogle Scholar
  64. Xu M, Wang Y, Yu S (2015) Conspecific negative density dependence decreases with increasing species abundance. Ecosphere 6:257. doi: 10.1890/ES15-00144.1 CrossRefGoogle Scholar
  65. Yamada T, Tomita A, Itoh A, Yamakura T, Ohkubo T, Kanzaki M, Tan S, Ashton PS (2006) Habitat associations of Sterculiaceae, trees in a Bornean rain forest plot. J Veg Sci 17:559–566. doi: 10.1111/j.1654-1103.2006.tb02479.x Google Scholar
  66. Yamada T, Tomita A, Itoh A, Yamakura T, Ohkubo T, Kanzaki M, Tan S, Ashton PS (2007) Strong habitat preference of a tropical rain forest tree does not imply large differences in population dynamics across habitat. J Ecol 95:332–342. doi: 10.1111/j.1365-2745.2006.01209.x CrossRefGoogle Scholar
  67. Yan Y, Zhang C, Wang YX, Zhao XH, Gadow KV (2015) Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession. Ecol Evol 5:4287–4299. doi: 10.1002/ece3.1688 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhang CY, Gao LS, Zhao XH (2009) Spatial structures in a secondary forest in Changbai Mountains Northeast China. Allg Forst Und Jagdztg 180:45–55Google Scholar
  69. Zhang C, Zhao Y, Zhao X, Gadow KV (2012) Species-habitat associations in a northern temperate forest in China. Silva Fenn 46:501–519Google Scholar
  70. Zhang C, Jin W, Gao L, Zhao XH (2014) Scale dependent structuring of spatial diversity in two temperate forest communities. For Ecol Manag 316:110–116. doi: 10.1016/j.foreco.2013.07.025 CrossRefGoogle Scholar
  71. Zhao D, Borders B, Wilson M, Rathbun SL (2006) Modeling neighborhood effects on the growth and survival of individual trees in a natural temperate species-rich forest. Ecol Model 196:90–102. doi: 10.1016/j.ecolmodel.2006.02.002 CrossRefGoogle Scholar
  72. Zhu Y, Comita LS, Hubbell SP, Alma KP (2015) Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J Ecol 103:957–966. doi: 10.1111/1365-2745.12414 CrossRefGoogle Scholar
  73. Zuur A, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Chunyu Fan
    • 1
  • Lingzhao Tan
    • 1
  • Peng Zhang
    • 1
  • Jingjing Liang
    • 2
  • Chunyu Zhang
    • 1
    Email author
  • Juan Wang
    • 1
  • Xiuhai Zhao
    • 1
  • Klaus von Gadow
    • 3
    • 4
  1. 1.Key Laboratory for Forest Resources and Ecosystem Processes of BeijingBeijing Forestry UniversityBeijingChina
  2. 2.School of Natural ResourcesWest Virginia UniversityMorgantownUSA
  3. 3.Faculty of Forestry and Forest EcologyGeorg-August-University GöttingenGöttingenGermany
  4. 4.Department of Forest and Wood ScienceUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations