European Journal of Forest Research

, Volume 136, Issue 3, pp 433–446 | Cite as

Understanding the naturalization of Eucalyptus globulus in Portugal: a comparison with Australian plantations

  • Ana Águas
  • Matthew J. Larcombe
  • Hugo Matias
  • Ernesto Deus
  • Brad M. Potts
  • Francisco C. Rego
  • Joaquim S. SilvaEmail author
Original Paper


Despite the potential utility of a biogeographical approach to understanding the naturalization of exotic species, studies using this approach are scarce. Eucalyptus globulus is an economically important Australian tree species that has become naturalized in a number of countries where it was introduced. Portugal is an ideal territory to study the naturalization of E. globulus owing to: a long introduction history, the antipodal location compared to Australia and the large cultivated area. Wildling density was assessed in 116 E. globulus plantations in central Portugal through 213 transects established along plantation borders. Boosted regression trees were used to model the influence of plantation-scale variables. Results from this survey were compared with data obtained in plantations from seven Australian regions, where a similar sampling protocol had been used. In Portugal, wildlings were more abundant in plantations that were: located in moist aspects, coppiced, with older tree stems and corresponding to intermediate site growth indexes. The overall density (127 plants ha−1) was 14.9 times higher than in the Australian estate, but this ratio was reduced to 3.1 in a more comparable subset of unburnt, first rotation plantations. A generalized linear model fitted using a dataset combining the two surveys showed that country influenced wildling density, together with plantation rotation and stem age. These results provide insights into the naturalization of a widely cultivated tree species, pointing to a fundamental role of the introduction history, possibly acting along with the biogeographical characteristics of the introduced range.


Plant establishment Exotic species Eucalypt plantation Forest management Introduction history Biogeography 



This research was developed in the scope of the “WildGum” project (FCT PTDC/AGR-FOR/2471/2012) funded by Fundação para a Ciência e a Tecnologia (FCT). A. A. and E. D. were supported by a PhD scholarship from FCT (SFRH/BD/76899/2011; PB/BD/113936/2015). A. A.’s and J. S. S.’s travels to Australia were funded by TRANZFOR programme from the European Commission—Marie Curie Actions. M.J.L’s and B.M.P’s travel to Portugal was funded by the "WildGum" project and a Maxwell Ralf Jacobs Scholarship Grant to M.J.L. We thank to Altri Florestal SA for providing access to their plantation estate and to data on plantation characteristics and management history, as well as for providing facilities for field work. Special thanks to Luis Ferreira for help with Altri’s database.


  1. AEMET, IM, (2011) Iberian climate atlas. Agencia Estatal de Meteorología and Instituto de Meteorologia, MadridGoogle Scholar
  2. Águas A, Ferreira A, Maia P, Fernandes PM, Roxo L, Keizer J, Silva JS, Rego FC, Moreira F (2014) Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. For Ecol Manag 323:47–56. doi: 10.1016/j.foreco.2014.03.012 CrossRefGoogle Scholar
  3. Almeida MH (1993) Estudo da variabilidade geografica em Eucalyptus globulus Labill., Universidade Técnica de Lisboa, LisboaGoogle Scholar
  4. Almeida JD, Freitas H (2001) The exotic and invasive flora of Portugal. Bot Complut 25:317–327Google Scholar
  5. Almeida MH, Chaves MM, Silva JC (1994) Cold acclimation in eucalypt hybrids. Tree Physiol 14:921–932CrossRefPubMedGoogle Scholar
  6. Alves AM, Pereira JS, Correia AV (2012) Silvicultura—a gestão dos ecossistemas florestais. Fundação Calouste Gulbenkian, LisboaGoogle Scholar
  7. Ashton D (1979) Seed harvesting by ants in forests of Eucalyptus regnans F. Muell. in central Victoria. Aust J Ecol 4:265–277CrossRefGoogle Scholar
  8. Barbour RC, Crawford AC, Henson M, Lee DJ, Potts BM, Shepherd M (2008a) The risk of pollen-mediated gene flow from exotic Corymbia plantations into native Corymbia populations in Australia. For Ecol Manag 256:1–19. doi: 10.1016/j.foreco.2008.03.028 CrossRefGoogle Scholar
  9. Barbour RC, Otahal Y, Vaillancourt RE, Potts BM (2008b) Assessing the risk of pollen-mediated gene flow from exotic Eucalyptus globulus plantations into native eucalypt populations of Australia. Biol Conserv 141:896–907CrossRefGoogle Scholar
  10. Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP, Vc Jaroaík, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339CrossRefPubMedGoogle Scholar
  11. Boer M, Del Barrio G, Puigdefábres J (1996) Mapping soil depth classes in dry Mediterranean areas using terrain attributes derived from a digital elevation model. Geoderma 72:99–118CrossRefGoogle Scholar
  12. Borralho N, Cotterill P, Kanowski P (1992) Genetic parameters and gains expected from selection for dry weight in Eucalyptus globulus ssp. globulus in Portugal. For Sci 38:80–94Google Scholar
  13. Borralho NMG, Almeida MH, Potts BM (2007) O melhoramento do eucalipto em Portugal. In: Alves AM, Pereira JS, Silva JMN (eds) O eucaliptal em Portugal: impactes anbientais e investigalção científica. ISA Press, Lisboa, pp 61–110Google Scholar
  14. Borzak CL, O’Reilly-Wapstra JM, Potts BM (2015) Direct and indirect effects of marsupial browsing on a foundation tree species. Oikos 124:515–524CrossRefGoogle Scholar
  15. Branco M (2007) Agentes patogénicos do eucalipto em Portugal. In: Alves AM, Pereira JS, Silva JMN (eds) O eucaliptal em Portugal: impactes ambientais e investigação científica. ISA Press, Lisboa, pp 255–282Google Scholar
  16. Cal-IPC (2006) California Invasive Plant Inventory. California Invasive Plant Council. Accessed 10 June 2011 Cal-IPC Publication 2006–02
  17. Calviño-Cancela M, Neumann M (2015) Ecological integration of eucalypts in Europe: interactions with flower-visiting birds. For Ecol Manag 358:174–179. doi: 10.1016/j.foreco.2015.09.011 CrossRefGoogle Scholar
  18. Calviño-Cancela M, Rubido-Bará M (2013) Invasive potential of Eucalyptus globulus: seed dispersal, seedling recruitment and survival in habitats surrounding plantations. For Ecol Manag 305:129–137CrossRefGoogle Scholar
  19. Cardoso JC, Bessa MT, Marado MB (1971) Carta de Solos 1:1,000,000. Serviço de Reconhecimento e Ordenamento Agrário, LisboaGoogle Scholar
  20. Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40CrossRefGoogle Scholar
  21. Catry F, Bugalho M, Silva JS (2007) Recuperação da Floresta após o fogo. O caso da Tapada Nacional de Mafra. Centro de Ecologia Aplicada Prof. Baeta Neves/ISA, LisbonGoogle Scholar
  22. Catry FX, Moreira F, Deus E, Silva JS, Águas A (2015) Assessing the extent and the environmental drivers of Eucalyptus globulus wildling establishment in Portugal: results from a countrywide survey. Biol Invasions 17:3163–3181. doi: 10.1007/s10530-015-0943-y CrossRefGoogle Scholar
  23. CELPA (2015) Boletim Estatístico 2014—Indústria Papeleira Portuguesa CELPA—Associação da Indústria Papeleira, LisbonGoogle Scholar
  24. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  25. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192CrossRefGoogle Scholar
  26. Dodet M, Collet C (2012) When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them? Biol Invasions 14:1765–1778. doi: 10.1007/s10530-012-0202-4 CrossRefGoogle Scholar
  27. Donaldson JE, Hui C, Richardson DM, Robertson MP, Webber BL, Wilson JR (2014) Invasion trajectory of alien trees: the role of introduction pathway and planting history. Glob Chang Biol 20:1527–1537CrossRefPubMedGoogle Scholar
  28. Doughty RW (2000) The Eucalyptus: a natural and commercial history of the gum tree. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  29. Elith J, Leathwick J (2016) Boosted Regression Trees for ecological modeling.
  30. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813CrossRefPubMedGoogle Scholar
  31. Essl F, Mang T, Dullinger S, Moser D, Hulme PE (2011) Macroecological drivers of alien conifer naturalizations worldwide. Ecography 34:1076–1084CrossRefGoogle Scholar
  32. Fagg P (2001) Eucalypt Sowing and Seedfall. Native Forest Silviculture Guideline No. 8. Department of Natural Resources and Environment, VictoriaGoogle Scholar
  33. FAO (2010) Global forest resources assessment 2010. FAO Forestry Paper. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  34. Feás X, Pires J, Estevinho ML, Iglesias A, De Araujo JPP (2010) Palynological and physicochemical data characterisation of honeys produced in the Entre-Douro e Minho region of Portugal. Int J Food Sci Tech 45:1255–1262CrossRefGoogle Scholar
  35. Fernandes P, Antunes C, Pinho P, Máguas C, Correia O (2016) Natural regeneration of Pinus pinaster and Eucalyptus globulus from plantation into adjacent natural habitats. For Ecol Manag 378:91–102. doi: 10.1016/j.foreco.2016.07.027 CrossRefGoogle Scholar
  36. Florence RG (1996) Ecology and silviculture of eucalypt forests. CSIRO, CollingwoodGoogle Scholar
  37. Freeman JS, Marques CM, Carocha V, Borralho N, Potts BM, Vaillancourt RE (2007) Origins and diversity of the Portuguese Landrace of Eucalyptus globulus. Ann For Sci 64:639–647CrossRefGoogle Scholar
  38. Gavran M (2015) Australian plantation statistics 2015 update. Australian Bureau of Agricultural and Resource Economics and Sciences, CanberraGoogle Scholar
  39. Gavran M, Parsons M (2011) Australian plantation statistics 2011. Australian Bureau of Agricultural and Resource Economics and Sciences, CanberraGoogle Scholar
  40. Goes E (1977) Os eucaliptos—ecologia, cultura produção e rentabilidade. Portucel, LisboaGoogle Scholar
  41. Gonçalves JLDM, Stape JL, Laclau J-P, Smethurst P, Gava JL (2004) Silvicultural effects on the productivity and wood quality of Eucalypt plantations. For Ecol Manag 193:45–61CrossRefGoogle Scholar
  42. González-Muñoz N, Castro-Díez P, Fierro-Brunnenmeister N (2011) Establishment success of coexisting native and exotic trees under an experimental gradient of irradiance and soil moisture. Environ Manag 48:764–773. doi: 10.1007/s00267-011-9731-3 CrossRefGoogle Scholar
  43. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15CrossRefGoogle Scholar
  44. Hijmans RJ, Phillips S, Leathwick J, Elith J (2016) dismo: Species Distribution Modeling. R package version 1.0–15Google Scholar
  45. Hingston A, Potts B, McQuillan P (2004) Pollination services provided by various size classes of flower visitors to Eucalyptus globulus ssp. globulus (Myrtaceae). Aust J Bot 52:353–369CrossRefGoogle Scholar
  46. ICNF (2013) IFN6 – Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. Instituto da Conservação da Natureza e das Florestas, LisboaGoogle Scholar
  47. IGP (2010) Land-cover cartography for continental Portugal from 2007 (Carta de uso e ocupação do solo de Portugal Continental para 2007 (COS 2007)). Portuguese Geographical Institute (IGP), LisbonGoogle Scholar
  48. Jacobs MR (1955) Growth habits of the eucalypts. Forest and Timber Bureau, CanberraGoogle Scholar
  49. Jacobs (1979) Eucalypts for planting. FAO Forestry Series, vol 11. FAO, RomeGoogle Scholar
  50. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170CrossRefGoogle Scholar
  51. Kirkpatrick JB (1975) Natural distribution of Eucalyptus globulus Labill. Aust Geogr 13:22–35CrossRefGoogle Scholar
  52. Larcombe MJ, Silva JS, Vaillancourt RE, Potts BM (2013) Assessing the invasive potential of Eucalyptus globulus in Australia: quantification of wildling establishment from plantations. Biol Invasions 15:2763–2781. doi: 10.1007/s10530-013-0492-1 CrossRefGoogle Scholar
  53. Larcombe MJ, Barbour RC, Vaillancourt RE, Potts BM (2014) Assessing the risk of exotic gene flow from Eucalyptus globulus plantations to native E. ovata forests. For Ecol Manag 312:193–202CrossRefGoogle Scholar
  54. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228CrossRefPubMedGoogle Scholar
  55. Lopez G, Potts B, Dutkowski G, Rodriguez Traverso J (2001) Quantitative genetics of Eucalyptus globulus: affinities of land race and native stand localities. Silvae Genet 50:244–252Google Scholar
  56. Lozon JD, MacIsaac HJ (1997) Biological invasions: are they dependent on disturbance? Environ Rev 5:131–144CrossRefGoogle Scholar
  57. Mack RN (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol Invasions 2:111–122CrossRefGoogle Scholar
  58. Marchante E, Madeira M, Freitas H (2001) Avaliação da colonização ectomicorrízica em plantações experimentais de Eucalyptus globulus Labill. Revista das Ciências Agrárias 24:205–212Google Scholar
  59. Marques MA, Mora E (1992) The influence of aspect on runoff and soil loss in a Mediterranean burnt forest (Spain). CATENA 19:333–344CrossRefGoogle Scholar
  60. McGowen M, Potts B, Vaillancourt R, Gore P, Williams D A genetic basis to the destruction of Eucalyptus globulus seed by wasps from the genus Megastigmus. In: Borralho NMG, Pereira JS, Marques C, Coutinho J, Madeira M, Tomé M (eds) Eucalyptus in a Changing World, Aveiro, Portugal, 11–15 October 2004a. IUFRO Conference. RAIZ, Instituto Investigação de Floresta e Papel, Aveiro, Portugal, pp 187–188Google Scholar
  61. McGowen MH, Potts BM, Vaillancourt RE, Gore P, Williams DR, Pilbeam DJ The genetic control of sexual reproduction in Eucalyptus globulus. In: Borralho NMG, Pereira JS, Marques C, Coutinho J, Madeira M, Tomé M (eds) Eucalyptus in a Changing World, Aveiro, Portugal, 11–15 October 2004b. IUFRO Conference. RAIZ, Instituto Investigação de Floresta e Papel, Aveiro, Portugal, pp 104–108Google Scholar
  62. McIver JD, Starr L (2000) Environmental effects of post-fire logging: literature review and annotated bibliography. General technical report. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, PortlandGoogle Scholar
  63. Moncur MW, Mitchell A, Fripp Y, Kleinschmidt GJ (1995) The role of honey bees (Apis mellifera) in eucalypt and acacia seed production areas. Commonw For Rev 74:350–354Google Scholar
  64. Orozco-Aceves M, Standish RJ, Tibbett M (2015) Long-term conditioning of soil by plantation eucalypts and pines does not affect growth of the native jarrah tree. For Ecol Manag 338:92–99CrossRefGoogle Scholar
  65. Parker JD, Torchin ME, Hufbauer RA, Lemoine NP, Alba C, Blumenthal DM, Bossdorf O, Byers JE, Dunn AM, Heckman RW (2013) Do invasive species perform better in their new ranges? Ecology 94:985–994CrossRefPubMedGoogle Scholar
  66. Potts BM, Vaillancourt RE, Jordan GJ, Dutkowski GW, Costa e Silva J, McKinnon GE, Steane DA, Volker PW, Lopez GA, Apiolaza LA, Li Y, Marques C, Borralho NMG Exploration of the Eucalyptus globulus gene pool. In: Borralho NMG, Pereira JS, Marques C, Coutinho J, Madeira M, Tomé M (eds) Eucalyptus in a changing world, Aveiro, Portugal, 11–15 October 2004. IUFRO Conference. RAIZ, Instituto Investigação de Floresta e Papel, Aveiro, Portugal, pp 46–61Google Scholar
  67. Potts B, Hamilton M, Pilbeam D (2014) Genetic improvement of temperate eucalypts in Australia. In: Ipinza R, Barros AS, Gutiérrez CB, Borralho N (eds) Mejoramiento Genético de Eucaliptos de en Chile. INFOR Instituto Forestal, pp 411–443Google Scholar
  68. Procheş Ş, Wilson JR, Richardson DM, Rejmánek M (2012) Native and naturalized range size in Pinus: relative importance of biogeography, introduction effort and species traits. Glob Ecol Biogeogr 21:513–523CrossRefGoogle Scholar
  69. Pyšek P, Jarošík V (2005) Residence time determines the distribution of alien plants. In: Inderjit S (ed) Invasive plants: ecological and agricultural aspects. Birkhäuser Verlag, Basel, pp 77–96Google Scholar
  70. Pysek P, Křivánek M, Jarošik V (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90:2734–2744CrossRefPubMedGoogle Scholar
  71. Radich MC (1994) Uma exótica em Portugal. Ler História 25:11–26Google Scholar
  72. Rejmánek M, Richardson D (2011) Eucalypts. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 203–209Google Scholar
  73. Ribeiro F, Tomé M (2000) Climatic classification of Portugal based on digitised climatic maps [in Portuguese]. Rev Cienc Agrar 23:39–50Google Scholar
  74. Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26CrossRefGoogle Scholar
  75. Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431CrossRefGoogle Scholar
  76. Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196:383–396CrossRefPubMedGoogle Scholar
  77. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809CrossRefGoogle Scholar
  78. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107CrossRefGoogle Scholar
  79. Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46CrossRefPubMedGoogle Scholar
  80. Santos P, Matias H, Deus E, Águas A, Silva JS (2015) Fire effects on capsules and encapsulated seeds from Eucalyptus globulus in Portugal. Plant Ecol 216:1611–1621. doi: 10.1007/s11258-015-0544-y CrossRefGoogle Scholar
  81. Sanz-Elorza M, Dana-Sánchez E, Sobrino-Vesperinas E (eds) (2004) Atlas de las Plantas Alóctonas Invasoras en España. Dirección General para la Biodiversidad, MadridGoogle Scholar
  82. Silva JS, Marchante H (2012) Post-fire management of exotic forests. In: Moreira F, Heras Jdl, Corona P, Arianoutsou M (eds) Post-Fire Management and Restoration of Southern European Forests. Springer, Dordrecht, pp 223–255CrossRefGoogle Scholar
  83. Silva JS, Tomé M (2016) Tasmanian blue gum in Portugal—opportunities and risks of a widely cultivated species. In: Krumm F, Vítková L (eds) Introduced tree species in European forests: opportunities and challenges. European Forest Institute, Freiburg, pp 352–361Google Scholar
  84. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102CrossRefGoogle Scholar
  85. Skolmen RG, Ledig T (1990) Eucalyptus globulus Labill. Bluegum eucalyptus. In: Burns R, Honkala B (eds) Silvics of North America, vol 2. Agriculture Handbook vol 654. United States Department of Agriculture, Forest Service, Washington, D. C., pp 299–304Google Scholar
  86. Strauss SY (2001) Benefits and risks of biotic exchange between Eucalyptus plantations and native Australian forests. Aust Ecol 26:447–457CrossRefGoogle Scholar
  87. Suding KN, Stanley Harpole W, Fukami T, Kulmatiski A, MacDougall AS, Stein C, Putten WH (2013) Consequences of plant–soil feedbacks in invasion. J Ecol 101:298–308CrossRefGoogle Scholar
  88. Suitor S, Potts BM, Brown PH, Gracie A, Gore PL (2008) Post-pollination capsule development in Eucalyptus globulus seed orchards. Aust J Bot 56:51–58CrossRefGoogle Scholar
  89. Suitor S, Potts BM, Brown PH, Gracie A, Rix K, Gore PL (2010) The impact of flower density and irrigation on capsule and seed set in Eucalyptus globulus seed orchards. New For 39:117–127CrossRefGoogle Scholar
  90. Thornhill AH, Ho SY, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Mol Phylogen Evol 93:29–43CrossRefGoogle Scholar
  91. Thuiller W, Richardson DM, Rouget M, Proches S, Wilson JR (2006) Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 87:1755–1769CrossRefPubMedGoogle Scholar
  92. Tomé M, Tomé J, Araújo MC, Pereira J (1994) Intraspecific competition in irrigated and fertilized eucalypt plantations. For Ecol Manag 69:211–218CrossRefGoogle Scholar
  93. Toro M, Silió L, Rodriguez M, Soria F, Toval G Genetic analysis of survival to drought in Eucalyptus globulus in Spain. In: Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, NSW, Australia, 1998. pp 499–502Google Scholar
  94. Turnbull JW, Pryor LD (1984) Choice of species and seed sources. In: Hillis WE, Brown AG (eds) Eucalypts for wood production. CSIRO Academic Press, Melbourne, pp 6–65Google Scholar
  95. van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cardenas D, Cardenas-Toro J, Castano N, Chacon E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Groom QJ, Henderson L, Inderjit Kupriyanov A, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, W-S Shu, Thomas J, Velayos M, Wieringa JJ, Pysek P (2015) Global exchange and accumulation of non-native plants. Nature. doi: 10.1038/nature14910 PubMedGoogle Scholar
  96. Williamson M (2006) Explaining and predicting the success of invading species at different stages of invasion. Biol Invasions 8:1561–1568CrossRefGoogle Scholar
  97. Wilson JR, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144. doi: 10.1016/j.tree.2008.10.007 CrossRefPubMedGoogle Scholar
  98. Xiao S, Callaway RM, Graebner R, Hierro JL, Montesinos D (2016) Modeling the relative importance of ecological factors in exotic invasion: the origin of competitors matters, but disturbance in the non-native range tips the balance. Ecol Model 335:39–47CrossRefGoogle Scholar
  99. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ana Águas
    • 1
    • 2
  • Matthew J. Larcombe
    • 3
    • 4
  • Hugo Matias
    • 1
  • Ernesto Deus
    • 1
    • 6
  • Brad M. Potts
    • 4
  • Francisco C. Rego
    • 1
  • Joaquim S. Silva
    • 1
    • 5
    Email author
  1. 1.Centre for Applied Ecology “Prof. Baeta Neves”, School of AgricultureUniversity of LisbonLisbonPortugal
  2. 2.School of Education and Social SciencesPolytechnic Institute of LeiriaLeiriaPortugal
  3. 3.Department of BotanyUniversity of OtagoDunedinNew Zealand
  4. 4.School of Biological Sciences and ARC Training Centre for Forest ValueUniversity of TasmaniaHobartAustralia
  5. 5.College of AgriculturePolytechnic Institute of CoimbraCoimbraPortugal
  6. 6.Department of Life Sciences, Centre for Functional EcologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations