Skip to main content

Advertisement

Log in

Assessment of the impact of forest harvesting operations on the physical parameters and microbiological components on a Mediterranean sandy soil in an Italian stone pine stand

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Forest harvesting operations may have a significant impact on soil physical properties by reducing its porosity and organic functions. Soil variations, in particular bulk density and total porosity, caused by external perturbations as soil becomes compacted due to machinery passes, can lead to changes in biogeochemical cycles that have consequences on soil ecosystems. This study investigated how the impact of forest operations and the elapsed time from harvest can influence: (1) the physical–chemical characteristics of soil and (2) the nitrogen-fixing and nitrifying microbial communities. The study area is located inside the Regional Park of Migliarino, San Rossore, Massaciuccoli (Pisa, Italy). In the study area, the soil has been classified as recent sands with sandy loam texture and slightly calcareous (USDA Soil Taxonomy classification). Soil samples were collected in patchy cut areas (strip cut) of Pinus pinea stand that was harvested in two steps: half area in 2006 and the rest in 2011. Soil samples were collected also in a control area (not harvested) with similar stand and soil characteristics. Statistical analysis was preceded by a test of normality (Kolmogorov–Smirnov test) and a variance homogeneity test (Levene’s test). Considering the dependence of the variables studied (physical and chemical soil characteristics), a MANOVA test and a post hoc Tukey HSD test were applied to determine statistical difference among the three treatments: harvested 2006, harvested 2011 and not harvested. The results did not indicate significant variations to the parameters of shear and penetration resistance, though soil bulk density and total porosity were significantly altered in the short period since forestry operations occurred. These physical changes induced qualitative (presence/absence and number of species) and quantitative (abundance and spatial evenness of the species) variations in the nitrogen-fixing and nitrifying microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams PW, Froehlich HA (1984) Compaction of forest soils. USDA Forest Service Research Paper PNW-217. Pacific Northwest Res Stn, Portland, p 13

  • Alakukku L, Weisskopf P, Chamen WC, Tijink FG, van der Linden J, Pires S, Sommer C, Spoor G (2003) Prevention strategies for field traffic-induced subsoil compaction: a review. Soil Tillage Res 73:145–160. doi:10.1016/S0167-1987(03)00107-7

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ampoorter E, Goris R, Cornelis WM, Verheyen K (2007) Impact of mechanized logging on compaction status of sandy forest soils. For Ecol Manag 241:162–174. doi:10.1016/j.foreco.2007.01.019

    Article  Google Scholar 

  • Ampoorter E, Van Nevel L, De Vos B, Hermy M, Verheyen K (2010) Assessing the effects of initial soil characteristics, machine mass and traffic intensity on forest soil compaction. For Ecol Manag 260:1664–1676. doi:10.1016/j.foreco.2010.08.002

    Article  Google Scholar 

  • Ampoorter E, Schrijver A, van Nevel L, Hermy M, Verheyen K (2012) Impact of mechanized harvesting on compaction of sandy and clayey forest soils: results of a meta-analysis. Ann For Sci 69:533–542. doi:10.1007/s13595-012-0199-y

    Article  Google Scholar 

  • Ballard TM (2000) Impacts of forest management on northern forest soils. For Ecol Manag 133:37–42. doi:10.1016/S0378-1127(99)00296-0

    Article  Google Scholar 

  • Blake GR (1965) Particle density. In: Black CA (ed) Methods of soil analysis, part I. Agronomy monographs, vol 9. American Society of Agronomy, Madison, pp 371–373

    Google Scholar 

  • Boerner REJ, Brinkman JA, Smith A (2005) Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest. Soil Biol Biochem 37:1419–1426. doi:10.1016/j.soilbio.2004.12.012

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Soc Am 4:325–349. doi:10.2307/1942268

    Google Scholar 

  • Bygden G, Eliasson L, Wasterlund I (2004) Rut depth, soil compaction and rolling resistance when using bogie tracks. J Terramech 40:179–190

    Article  Google Scholar 

  • Cambi M, Certini G, Neri F, Marchi E (2015) The impact of heavy traffic on forest soils: a review. For Ecol Manag 338:124–138. doi:10.1016/j.foreco.2014.11.022

    Article  Google Scholar 

  • Cambi M, Grigolato S, Neri F, Picchio R, Marchi E (2016) Effects of forwarder operation on soil physical characteristics: a case study in the Italian alps. Croat J For Eng 37:233–239

    Google Scholar 

  • Currie JA (1984) Gas diffusion through soil crumbs: the effects of compaction and wetting. J Soil Sci 34:217–232. doi:10.1111/j.1365-2389.1983.tb01029.x

    Article  Google Scholar 

  • Dexter AR (2004) Soil physical quality: part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120:201–214. doi:10.1016/j.geoderma.2003.09.004

    Article  Google Scholar 

  • Frey B, Kremer J, Rüdt A, Sciacca S, Matthies D, Lüscher P (2009) Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. Eur J Soil Biol 45:312–320. doi:10.1016/j.ejsobi.2009.05.006

    Article  Google Scholar 

  • Frey B, Niklaus PA, Kremer J, Luscher P, Zimmermann S (2011) Heavy machinery traffic impacts methane emission, abundance of methanogen and community structure in oxic forest soils. Appl Environ Microbiol 77:6060–6068. doi:10.1128/AEM.05206-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froehlich HA, Miles DWR, Robbins RW (1985) Soil bulk density recovery on compacted skid trails in central Idaho. SSSAJ 49:1015–1017. doi:10.2136/sssaj1985.03615995004900040045x

    Article  Google Scholar 

  • Gomez A, Powers RF, Singer MJ, Horwath WR (2002) Soil compaction effects on growth of young ponderosa pine following litter removal in California’s Sierra Nevada. SSSAJ 66:1334–1343. doi:10.2136/sssaj2002.1334

    Article  CAS  Google Scholar 

  • Guillot G, Estoup A, Mortier F, Cosson JF (2005a) A spatial statistical model for landscape genetics. Genetics 170:261–1280. doi:10.1534/genetics.104.033803

    Article  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005b) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715. doi:10.1111/j.1471-8286.2005.01031.x

    Article  CAS  Google Scholar 

  • Guillot G, Santos F, Estoup A (2008) Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24:1406–1407. doi:10.1093/bioinformatics/btn136

    Article  CAS  PubMed  Google Scholar 

  • Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756. doi:10.1111/j.1365-294X.2009.04410.x

    Article  PubMed  Google Scholar 

  • Hartmann M, Howes CG, Van Insberghe D, Yu H, Bachar D, Christen R, Nilsson RH, Hallam SJ, Mohn WW (2012) Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forest. ISME J 6:2199–2218. doi:10.1038/ismej.2012.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Aberenkov K, Luscher P, Widmmer F, Frey B (2014) Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J 8:1–19. doi:10.1038/ismej.2013.141

    Article  Google Scholar 

  • Horn R, Vossbrink J, Peth S, Becker S (2007) Impact of modern forest vehicles on soil physical properties. For Ecol Manag 248:56–63. doi:10.1016/j.foreco.2007.02.037

    Article  Google Scholar 

  • Huang L, Lacey ST, Ryan PJ (1996) Impact of forest harvesting on the hydraulic properties of surface soil. Soil Sci 161:79–86. doi:10.1097/00010694-199602000-00001

    Article  CAS  Google Scholar 

  • Jamshidi R, Jaeger D, Raafatnia N, Tabari M (2008) Influence of two ground-based skidding systems on soil compaction under different slope and gradient conditions. J For Eng 19:9–16. doi:10.1093/forestry/71.1.57

    Google Scholar 

  • Jansson K, Johansson J (1998) Soil changes after traffic with a tracked and a wheeled forest machine: a case study on a silt loam in Sweden. Forestry 71:57–66

    Article  Google Scholar 

  • Kaiser EA, Walenzik G, Heinemeyer O (1991) The influence of soil compaction on the decomposition of plant residues and microbial biomass. In: Wilson WS (ed) Advances in soil organic matter research: the impact on agriculture and the environment, vol 9. Special Publication Royal Society of Chemistry, Cambridge, pp 207–216

    Google Scholar 

  • Kutílek M, Jendele L, Panayiotopoulos KP (2006) The influence of uniaxial compression upon pore size distribution in bi-modal soils. Soil Tillage Res 86:27–37. doi:10.1016/j.still.2005.02.001

    Article  Google Scholar 

  • Labelle ER, Jeager D (2011) Soil compaction caused by cut-to-length forest operations and possible short-term natural rehabilitation of soil density. Soil Sci Soc Am J 75:2314–2329

    Article  CAS  Google Scholar 

  • Labelle ER, Jaeger D (2012) Quantifying the use of brush mats in reducing forwarder peak loads and surface contact pressures. Croat J For Eng 33:249–274

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • LeBauer DS, Tresender KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecol 89:371–379. doi:10.1890/06-2057.1

    Article  Google Scholar 

  • Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–24. doi:10.1016/j.soilbio.2014.03.021

    Article  CAS  Google Scholar 

  • Magagnotti N, Spinelli R, Güldner O, Erler J (2012) Site impact after motor-manual and mechanised thinning in Mediterranean pine plantations. Biosyst Eng 113:140–147. doi:10.1016/j.biosystemseng.2012.07.001

    Article  Google Scholar 

  • Malmer A, Grip H (1990) Soil disturbance and loss of infiltrability caused by mechanized and manual extraction of tropical rainforest in Sabah, Malaysia. For Ecol Manag 38:1–12. doi:10.1016/0378-1127(90)90081-L

    Article  Google Scholar 

  • Marchi E, Picchio R, Mederski PS, Vusić D, Perugini M, Venanzi R (2016) Impact of silvicultural treatment and forest operation on soil and regeneration in Mediterranean Turkey oak (Quercus cerris L.) coppice with standards. Ecol Eng 95:475–484. doi:10.1016/j.ecoleng.2016.06.084

    Article  Google Scholar 

  • Marchi E, Picchio R, Spinelli R, Verani S, Venanzi R, Certini G (2014) Environmental impact assessment of different logging methods in pine forests thinning. Ecol Eng 70:429–436. doi:10.1016/j.ecoleng.2014.06.019

    Article  Google Scholar 

  • Marshall VG (2000) Impacts of forest harvesting on biological processes in northern forest soils. For Ecol Manag 133:43–60. doi:10.1016/S0378-1127(99)00297-2

    Article  Google Scholar 

  • McKenzie NJ, Isbell RF, Brown KL (2004) Australian soils and landscapes an illustrated compendium. CSIRO Publishing, Collingwood

    Google Scholar 

  • McNabb DH, Startsev AD, Nguyen H (2001) Soil wetness and traffic level effects on bulk density and air-filled porosity of compacted boreal forest soils. Soil Sci Soc Am J 65:1238–1247. doi:10.2136/sssaj2001.6541238x

    Article  CAS  Google Scholar 

  • Neri F, Spinelli R, Lyons J (2007) Ground pressure forwarder trials: assess benefits in reducing wheel rutting. In: Ground pressure forwarder trials: assess benefits in reducing wheel rutting. Austro 2007/FORMEC 2007—Meeting the needs of tomorrows’ forests—new developments in forest engineering, pp 1–10

  • Page-Dumroese DS, Jurgensen MF, Tiarks AE, JrF Ponder, Sanchez FG, Fleming RL, Kranabetter JM, Powers RF, Stone DM, Elioff JD, Scott DA (2006) Soil physical property changes at the North American Long-Term Soil Productivity study sites: 1 and 5 years after compaction. Can J For Res 36:551–564. doi:10.1139/x05-273

    Article  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144. doi:10.1016/0022-5193(66)90013-0

    Article  Google Scholar 

  • Porteous LA, Seidler RJ, Watrud LS (1997) An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications. Mol Ecol 6:787–791. doi:10.1046/j.1365-294X.1997.00241.x

    Article  CAS  Google Scholar 

  • Picchio R, Neri F, Petrini E, Verani S, Marchi E, Certini G (2012) Machinery-induced soil compaction in thinning two pine stands in central Italy. For Ecol Manag 285:38–43. doi:10.1016/j.foreco.2012.08.008

    Article  Google Scholar 

  • Pritchett WL, Fisher RF (1987) Properties and management of forest soils, 2nd edn. Wiley, New York, p 494

    Google Scholar 

  • Quesnel H, Curran M (2000) Shelterwood harvesting in root-disease infected stands—post-harvest soil disturbance and compaction. For Ecol Manag 133:89–113. doi:10.1016/S0378-1127(99)00301-1

    Article  Google Scholar 

  • Rab MA (1994) Changes in physical properties of a soil associated with logging of Eucalyptus regnans forest in southeastern Australia. For Ecol Manag 70:215–229. doi:10.1016/0378-1127(94)90088-4

    Article  Google Scholar 

  • Reisinger TW, Pope PE, Hammond SC (1992) Natural recovery of compacted soils in an upland hardwood forest in Indiana. North J Appl For 9:138–141

    Google Scholar 

  • Rogers BF, Tate RL (2001) Temporal analysis of the soil microbial community along a top sequence in Pineland soils. Soil Biol Biochem 33:1389–1401. doi:10.1016/S0038-0717(01)00044-X

    Article  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnurr-Pütz S, Bååth E, Guggenberger G, Drake HL, Küsel K (2006) Compaction of forest soil by logging machinery favours occurrence of prokaryotes. FEMS Microbiol Ecol 58:503–513. doi:10.1111/j.1574-6941.2006.00175.x

    Article  PubMed  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. doi:10.1002/j.1538-7305.1948.tb01338.x

    Article  Google Scholar 

  • Spinelli R, Lombardini C, Magagnotti M (2014) The effect of mechanization level and harvesting system on the thinning cost of Mediterranean softwood plantations. Silva Fenn 48(1):1003. doi:10.14214/sf.1003

    Article  Google Scholar 

  • Suvinon A (2007) Economic comparison of the use of tyre wheel chains and bogie tracks for timber extraction. Croat J For Eng 27:81–102

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2- fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Linden AMA, Jeurissen LJJ, van Veen JA, Schippers B (1989) Turnover of the soil microbial biomass as influence by soil compaction. In: Hansen JA, Henriksen K (eds) Nitrogen in organic wastes applied to soils. Academic Press, London, pp 25–46

    Chapter  Google Scholar 

  • van der Weert R (1974) Influence of mechanical forest cleaning on soil conditions and the resulting effects on root growth. Trop Agric 51:325–331

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochem 13:87–115. doi:10.1007/BF00002772

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PM, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. doi:10.1890/1051-0761(1997)007[0737:haotgn]2.0.co;2

    Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45. doi:10.1023/A:1015798428743

    Article  Google Scholar 

  • Webster G, Embley TM, Prosser JI (2002) Grassland management regimens reduce small-scale heterogeneity and species diversity of B-proteobacterial ammonia oxidizer populations. Appl Environ Microbiol 68:20–30. doi:10.1128/AEM.68.1.20-30.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wästerlund I (1985) Compaction of till soils and growth tests with Norway spruce and Scots pine. For Ecol Manag 11:171–189. doi:10.1016/0378-1127(85)90025-8

    Article  Google Scholar 

  • Williamson JR, Neilsen WA (2000) The influence of forest site on rate and extent of soil compaction and profile disturbance of skid trails during ground-based harvesting. Can J For Res 30:1196–1205. doi:10.1139/x00-041

    Article  Google Scholar 

  • Young IM, Ritz K (2000) Tillage, habitat space and function of soil microbes. Soil Tillage Res 53:201–213. doi:10.1016/S0167-1987(99)00106-3

    Article  Google Scholar 

  • Yeager CM, Northup DE, Grow CC, Barns SM, Kuske CR (2005) Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Appl Environ Microbiol 715:2713–2722. doi:10.1128/AEM.71.5.2713-2722.2005

    Article  Google Scholar 

  • Zani S, Mellon MT, Collier JL, Zehr JP (2000) Expression of nifH genes in natural assemblages in Lake George, New York, detected by reverse transcriptase PCR. Appl Environ Microbiol 66:3119–3124. doi:10.1128/AEM.66.7.3119-3124.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenner EK, Fauskee JT, Berger AL, Puettmann KJ (2007) Impacts of skidding traffic intensity on soil disturbance, soil recovery, and aspen regeneration in north-central Minnesota. North J Appl For 24:177–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatella Paffetti.

Additional information

Communicated by Eric R. Labelle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cambi, M., Paffetti, D., Vettori, C. et al. Assessment of the impact of forest harvesting operations on the physical parameters and microbiological components on a Mediterranean sandy soil in an Italian stone pine stand. Eur J Forest Res 136, 205–215 (2017). https://doi.org/10.1007/s10342-016-1020-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-016-1020-5

Keywords

Navigation