Skip to main content

Advertisement

Log in

The effect of tending and commercial thinning on the genetic diversity of Scots pine stands

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The objective of this study was to estimate the effect of pre-commercial tending and commercial thinning on the genetic diversity parameters, especially rare allele loss and diameter–heterozygosity associations, in Scots pine stands by retrospectively modelling the removal of inferior/superior trees. Modelling was based on empirical data of DNA polymorphism in (a) a 60-year-old natural stand and (b) a 20-year-old young stand planted with seeds collected in a seed orchard. Within each of these stands, approximately 400 trees were systematically sampled within 1-ha plots (800 trees in total) and genotyped at 5 neutral and 7 EST-derived nuclear microsatellite markers. There was no significant association between heterozygosity, common allele number and tree diameter in either stand. Even at a high intensity, both simulated tending and commercial thinning had minor effects on the heterozygosity and allelic diversity but caused a significant loss of rare alleles. However, there was a nonlinear relationship between the loss of rare alleles and the thinning intensity in the young stand, such that below 30 % thinning intensity, the rare alleles were lost at a markedly lower rate. In conclusion, the association between commercial value and genetic diversity is weak in Scots pine. Thinning causes loss of rare alleles; however, for specific cases, it could be possible to identify the margins for a slow rate of rare allele loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahamsson S, Ahlinder J, Waldmann P, Garcia-Gil MR (2013) Maternal heterozygosity and progeny fitness association in an inbred Scots pine population. Genetica 141:41–51

    Article  CAS  PubMed  Google Scholar 

  • Belletti P, Ferrazzini D, Piotti A, Monteleone I, Ducci F (2012) Genetic variation and divergence in Scots pine (Pinus sylvestris L.) within its natural range in Italy. Eur J Forest Res 131:1127–1138

    Article  Google Scholar 

  • Buiteveld J, Vendramin GG, Leonardi S, Kamer K, Geburek T (2007) Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. For Ecol Manag 247:98–106

    Article  Google Scholar 

  • Chapuis M, Lecoq M, Michalakis Y, Loiseau A, Sword GA, Piry S, Estoup A (2008) Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria a pest plagued by microsatellite null alleles. Mol Ecol 17:640–3653

    Article  Google Scholar 

  • Chudzińska E, Diatta JB, Wojnicka-Półtorak A (2014) Adaptation strategies and referencing trial of Scots and black pine populations subjected to heavy metal pollution. Environ Sci Pollut R 21(3):2165–2177

    Article  CAS  Google Scholar 

  • Chybicki IA, Dzialuk M, Trojankiewicz M, Slawski M, Burczyk J (2007) Spatial genetic structure within two contrasting stands of Scots pine (Pinus sylvestris L.). Silvae Genet 57:4–5

    Google Scholar 

  • Danusevicius D (2008) Hybrid vigour from intra-specific crosses of Scots pine. Balt For 14(1):2–6

    Google Scholar 

  • Deng HW, Fu YX (1998) Conditions for positive and negative correlations between fitness and heterozygosity in equilibrium populations. Genetics 148:1333–1340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dounavi KD, Steiner W, Maurer WD (2002) Effects of different silvicultural treatments on the genetic structure of European beech populations (Fagus sylvatica L.). In: von Gadow K, Nagel J, Saborowski J (eds) Continuous cover forestry: assessment, analysis, scenarios. Kluwer Academic Publishers, Dordrecht, pp 81–90

    Chapter  Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Elsik CG, Minihan VT, Hall SE, Scarpa AM, Williams CG (2000) Low-copy microsatellite markers for Pinus taeda L. Genome 43:550–555

    Article  CAS  PubMed  Google Scholar 

  • Finkeldey R, Ziehe M (2004) Genetic implications of silvicultural regimes. For Ecol Manag 197:231–244

    Article  Google Scholar 

  • Garcia-Gil MR, Olivier F, Kamruzzahan S, Waldmann P (2009) Joint analysis of spatial genetic structure and inbreeding in a managed population of Scots pine. Heredity 103:90–96

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gil MR, Floran V, Östlund L, Mullin TJ, Andersson Gull B (2015) Genetic diversity and inbreeding in natural and managed populations of Scots pine. Tree Genet Genom. doi:10.1007/s11295-015-0850-5

    Google Scholar 

  • Geburek T, Müller F (2005) How can silvicultural management contribute to genetic conservation?. Arbora Publishers, Zvolen, pp 3–8

    Google Scholar 

  • Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7(9):e45170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertel H, Kaetyel R (1999) Susceptibility of Norway Spruce Picea abies (L.) Karst clones to insects and roe deer in relation to genotype and foliar phytochemistry by phyton (Austria). Phyton 39(4):65–72 (special issue “Eurosilva”)

  • Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Hosius B, Leinemann L, Konnert M, Bergmann F (2006) Genetic aspects of forestry in the Central Europe. Eur J For Res 125:907–913

    Article  Google Scholar 

  • Hussendorfer E, Konnert M (2000) Investigations of genetic variation of silver fir (Abies alba Mill) in uneven-aged forests (“Plenterwald”) in comparison with even-aged forests (“Altersklassenwald”). Forstwiss Cent 119(4):208–225

    Article  Google Scholar 

  • Katzel R, Nordt B, Schmitt J (2001) Untersuchungen zum Einfluß der Durchforstungsintensität auf die genetische Struktur von Kiefernbeständen in den Berliner Forsten auf der Grundlage von Isoenzym-und DNA-Markern. In: Wolf H (ed) Nachhaltige Nutzung forstgenetischer Ressourcen Tagungsbericht zur 24 Internationalen Tagung der Arbeitsgem f Forstgenetik u forstpflanzenzuchtung Sachsische Landesanstalt fu¨r Forsten, Pirna, Germany, pp 159–170

  • Konnert M, Hosius B (2010) Contribution of forest genetics for a sustainable forest management. Forstarchiv 81:170–174

    Google Scholar 

  • Krakau U-K, Liesebach M, Aronen T, Lelu-Walter M-A, Schneck V (2013) Scots pine. In: Luc E (ed) Forest tree breeding in Europe. Managing forest ecosystems, vol 25, Pâques, 2013. Springer, VI (chapter 6.3)

  • Ledig FT, Guries RP, Bonefeld BA (1983) The relation of growth to heterozygosity in pitch pine. Evolution 37:1227–1238

    Article  Google Scholar 

  • Macdonald SE, Thomas BR, Cherniawsky DM, Purdy BG (2001) Managing genetic resources of lodgepole pine in west-central Alberta: patterns of isozyme variation in natural populations and effects of forest management. For Ecol Manag 152:45–58

    Article  Google Scholar 

  • Miyamoto N, Fernández-Manjarrés JF, Morand-Prieur ME, Bertolino P, Frascaria-Lacoste N (2008) What sampling is needed for reliable estimations of genetic diversity in Fraxinus excelsior L.(Oleaceae)? Ann For Sci 65(4):403–410

    Article  Google Scholar 

  • Nijensohn SE, Schaberg PG, Hawley GJ, DeHayes DH (2005) Genetic subpopulation structuring and its implications in a mature eastern white pine stand. Can J For Res 35:1041–1052

    Article  Google Scholar 

  • Paffetti D, Travaglini D, Buonamici A et al (2012) The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. For Ecol 284:34–44

    Google Scholar 

  • Pazouki L, Shanjani PS, Fields PD, Martins K, Suhhorutsenko M, Viinalass H, Niinemets U (2016) Large within-population genetic diversity of the widespread conifer Pinus sylvestris at its soil fertility limit characterized by nuclear and chloroplast microsatellite markers. Eur J For Res 135:161–177

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pfaffenberger RC, Patterson JH (1987) Statistical methods. Richard D. and Irvin Inc., Illinois, pp 809–817

    Google Scholar 

  • Rajendra KC, Seifert S, Prinz K, Gailing O, Finkeldey R (2014) Subtle human impacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (Fagus sylvatica). For Ecol Manag 319:138–149

    Article  Google Scholar 

  • Rajora OP, Rahman MH, Buchert GP, Dancik BP (2000) Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario. Mol Ecol 9:339–348

    Article  CAS  PubMed  Google Scholar 

  • Ratnam W, Rajora OP, Finkeldey R, Aravanopoulos F, Jean-Marc Bouvete J-M, Vaillancourt RE, Kanashirog M, Fadyh B, Tomitai M, Vinsonj Ch (2014) Genetic effects of forest management practices: global synthesis and perspectives. For Ecol Manag 333:52–65

    Article  Google Scholar 

  • Robichaud RL, Glaubitz JC, Rhodes OE, Woeste K Jr (2010) Genetic consequences of harvest in a mature second-growth stand of black walnut (Juglans nigra L.). Ann For Sci 67:702

    Article  Google Scholar 

  • Rotherham T (2011) Forest management certification around the world—progress and problems. For Chron 87(5):603–611

    Article  Google Scholar 

  • Savolainen O, Hedrick P (1995) Heterozygosity and fitness: no association in Scots pine. Genetics 140:755–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaberg PG, DeHayes DH, Hawley GJ, Nijensohn SE (2008) Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. For Ecol Manag 256:855–862

    Article  Google Scholar 

  • Sebastiani F, Pinzauti F, Kujala ST, González-Martínez SC, Vendramin GG (2012) Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. Conserv Genet Resour 4(2):231–234

    Article  Google Scholar 

  • Soranzo N, Provan J, Powell W (1998) Characterization of microsatellite loci in Pinus sylvestris L. Mol Ecol 7:1260–1261

    CAS  PubMed  Google Scholar 

  • Szmidt EA, Muoana O (1985) Genetic effects of Scots pine domestication. In: Lecture notes in biomathematics, vol 60, pp 241–252

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley PF (2005) Micro-checker user guide. The University of Hull, Hull

    Google Scholar 

  • Wolf H (2001) Auswirkungen von waldbaulichen Eingriffen auf die genetische Struktur von Durchforstungsbeständen der Fichte, Rotbuche und Stieleiche in Sachsen. In: Nachhaltige Nutzung forstgenetischer Ressourcen Tagungsbericht 24 Internationale Tagung der ARGE Forstgenetik/Forstpflanzenzüchtung, 14–16 März 2000, Pirna, pp 171–181

  • Yazdani R, Muona O, Rudin D, Szmidt AE (1985) Genetic structure of Pinus sylvestris seed tree stand and naturally regenerated understory. For Sci 31:430–436

    Google Scholar 

  • Zeide B (2001) Thinning and growth: a full turnaround. Forestry 99:20–25

    Google Scholar 

  • Ziehe M, Hattemer HH (2002) Target-diameter felling and consequences for genetic structures in a beech stand (Fagus sylvatica L.). In: von Gadow K, Nagel J, Saborowski J (eds) Continuous cover forestry. Managing forest ecosystems, vol 4. Kluwer Academic Publishers, Dordrecht, pp 91–105

    Chapter  Google Scholar 

Download references

Acknowledgments

This study was conducted within the framework of the Ministry of Science and Education of the Lithuanian research project No. VP1-3.1-ŠMM-08-K-01-025 entitled “Specific, genetic diversity and sustainable development of Scots pine forest to mitigate the negative effects of increased human pressure and climate change”, which was supported by the EU Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darius Danusevicius.

Additional information

Handling Editor: Miren del Rio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danusevicius, D., Kerpauskaite, V., Kavaliauskas, D. et al. The effect of tending and commercial thinning on the genetic diversity of Scots pine stands. Eur J Forest Res 135, 1159–1174 (2016). https://doi.org/10.1007/s10342-016-1002-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-016-1002-7

Keywords

Navigation