Advertisement

European Journal of Forest Research

, Volume 135, Issue 6, pp 1011–1023 | Cite as

Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps

  • Christina KrausEmail author
  • Christian Zang
  • Annette Menzel
Original Paper

Abstract

Alpine ecosystems face multiple environmental impacts caused by extraordinary rapid warming. One of the impacts caused by rising temperature is the prolongation of the growing season. To determine temperature-driven variation in leaf and xylem phenology, we studied Norway spruce and European beech along two elevational transects in the Northern Limestone Alps, southern Germany. Phenology was observed, and microcore samples were taken regularly from May to October 2011. Microcore thin sections were analyzed for expanding, wall thickening and mature cells in the forming tree ring. Leaf phenology and xylem phenology were compared in respect of onset dates, elevational responses and aspects. Both tree species showed similar responses to elevation in early spring leaf and xylem phenological phases. Delayed start dates and advanced end dates led to shortened growing seasons with elevation for both leaf and xylem development. Elevational responses of phenological phases were similar to each other throughout the growing season in spruce, but only at the beginning of the season for beech. Xylem growth periods from cell expansion until the end of lignification were strongly reduced with elevation for beech, especially the period in which new cells were formed. This was mainly due to an earlier end of xylem cell formation in higher elevations. For spruce, the length of the xylem cell growth period decreased less with elevation. Colder conditions in high elevations seemed to lead to a longer period of cell maturation in spruce. We conclude that with warmer temperature conditions, the tree-ring growth period could be lengthened more in beech compared to spruce, as long as it is not limited by drought stress or unfulfilled chilling requirements.

Keywords

Xylogenesis Altitudinal gradients Picea abies Fagus sylvatica Alpine forest Growing season 

Notes

Acknowledgments

Our gratitude is directed to the Bavarian State Ministry of the Environment and Consumer Protection for funding the project “Auswirkungen des Klimawandels in den Alpen - Erfassung mittels Höhengradienten” (KLIMAGRAD) within the “Klimaprogramm Bayern 2020.” The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007–2013)/ERC grant agreement n° [282250]. Supported by the Technische Universität München—Institute for Advanced Study, funded by the German Excellence Initiative.

Supplementary material

10342_2016_990_MOESM1_ESM.tif (274 kb)
Fig. Supplement Gompertz fits on the development of total xylem increment in the year 2011 for Fagus sylvatica and Picea abies on all sites (elevations from 800 to 1400 m a.s.l. and north and south aspect transects). (TIFF 274 kb)

References

  1. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31. doi: 10.1023/A:1024458411589 CrossRefGoogle Scholar
  2. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern Hemisphere: part 1, local and regional climate signals. Holocene 12:737–757. doi: 10.1191/0959683602hl587rp CrossRefGoogle Scholar
  3. Caffarra A, Donnelly A (2011) The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int J Biometeorol 55:711–721. doi: 10.1007/s00484-010-0386-1 CrossRefPubMedGoogle Scholar
  4. Christensen JH, Hewitson B, Busuioc A, et al. (2007) Regional climate projections, climate change, 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. University Press, Cambridge, pp 849–940Google Scholar
  5. Čufar K, De Luis M, Prislan P, Gričar J, Črepinšek Z, Merela M, Kajfež-Bogataj L (2015) Do variations in leaf phenology affect radial growth variations in Fagus sylvatica? Int J Biometeorol 59:1127–1132. doi: 10.1007/s00484-014-0896-3 CrossRefPubMedGoogle Scholar
  6. Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28:863–871. doi: 10.1093/treephys/28.6.863 CrossRefPubMedGoogle Scholar
  7. Di Filippo A, Biondi F, Čufar K, De Luis M, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892. doi: 10.1111/j.1365-2699.2007.01747.x CrossRefGoogle Scholar
  8. Dobbertin M, Giuggiola A (2006) Baumwachstum und erhöhte Temperaturen. Forum für Wissen 2006: 35–45. Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSLGoogle Scholar
  9. Engler R, Randin CF, Thullier W, Dullinger S, Zimmermann NE, Araújo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH, Choler P, Coleda G, De Lamo X, Dirnböck T, Gégout J-C, Gómez-García D, Grytnes J-A, Heegaard E, Høistad F, Nogués-Bravo D, Normand S, Puşcaş M, Sebastià M-T, Stanisci A, Theurillat J-P, Trivedi MR, Vittoz P, Guisan A (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341. doi: 10.1111/j.1365-2486.2010.02393.x CrossRefGoogle Scholar
  10. Estrella N, Menzel A (2006) Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Climate Res 32:253–267. doi: 10.3354/cr032253 CrossRefGoogle Scholar
  11. Ewald J (1997) Die Bergmischwälder der Bayerischen Alpen. Dissertationes Botanicae 290, J. Cramer, BerlinGoogle Scholar
  12. Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22:107–121. doi: 10.1016/j.dendro.2005.02.004 CrossRefGoogle Scholar
  13. Gamache I, Payette S (2005) Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J Biogeogr 32:849–862. doi: 10.1111/j.1365-2699.2004.01182.x CrossRefGoogle Scholar
  14. Gričar J, Čufar K (2008) Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russ J Plant Physl 55:538–543. doi: 10.1134/S102144370804016X CrossRefGoogle Scholar
  15. Gričar J, Prislan P, Gryc V, Vavrčík H, De Luis M, Čufar K (2014) Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiol 34:869–881. doi: 10.1093/treephys/tpu026 CrossRefPubMedGoogle Scholar
  16. Gričar J, Prislan P, De Luis M, Gryc V, Hacurová J, Vavrčík H, Čufar K (2015) Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front Plant Sci. doi: 10.3389/fpls.2015.00730 PubMedPubMedCentralGoogle Scholar
  17. Gryc V, Hacura J, Vavrčík H, Urban J, Gebauer R (2012) Monitoring of xylem formation in Picea abies under drought stress influence. Dendrobiology 67:15–24Google Scholar
  18. Hadwiger H (1940) Eine analytische Reproduktionsfunktion für biologische Gesamtheiten. Scand Actuar J 1940:101–113. doi: 10.1080/03461238.1940.10404802 CrossRefGoogle Scholar
  19. Hartl-Meier C, Dittmar C, Zang C, Rothe A (2014a) Mountain forest growth response to climate change in the Northern Limestone Alps. Trees 28:819–829. doi: 10.1007/s00468-014-0994-1 CrossRefGoogle Scholar
  20. Hartl-Meier C, Zang C, Dittmar C, Esper J, Göttlein A, Rothe A (2014b) Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Clim Res 60:119–132. doi: 10.3354/cr01226 CrossRefGoogle Scholar
  21. Heide OM (2003) High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of global warming. Tree Physiol 23:931–936CrossRefPubMedGoogle Scholar
  22. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  23. Jyske T, Mäkinen H, Kalliokoski T, Nöjd P (2014) Intra-annual tracheid production of Norway spruce and Scots pine across a latitudinal gradient in Finland. Agric For Meteorol 194:241–254. doi: 10.1016/j.agrformet.2014.04.015 CrossRefGoogle Scholar
  24. Körner C (2003) Alpine plant life—functional plant ecology of high mountain ecosystems. Springer, HeidelbergGoogle Scholar
  25. Körner C (2007) The use of altitude in ecological research. Trends Ecol Evol 22:569–574. doi: 10.1016/j.tree.2007.09.006 CrossRefPubMedGoogle Scholar
  26. Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic Press, TorontoGoogle Scholar
  27. Kullman L (2007) Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005: implications for tree line theory and climate change ecology. J Ecol 95:41–52. doi: 10.1111/j.1365-2745.2006.01190.x CrossRefGoogle Scholar
  28. Martinez del Castillo E, Longares LA, Gričar J, Prislan P, Gil-Pelegrin E, Čufar K, Luis M (2016) Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean conditions. Front Plant Sci 7:370. doi: 10.3389/fpls.2016.00370 CrossRefPubMedPubMedCentralGoogle Scholar
  29. McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331. doi: 10.1046/j.1523-1739.2001.015002320.x CrossRefGoogle Scholar
  30. Meier U (1997) Growth stages of mono- and dicotyledonous plants. Blackwell, BerlinGoogle Scholar
  31. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659. doi: 10.1038/17709 CrossRefGoogle Scholar
  32. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976. doi: 10.1111/j.1365-2486.2006.01193.x CrossRefGoogle Scholar
  33. Michelot A, Simard S, Rathgeber C, Dufrene E, Damesin C (2012) Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol 32(8):1033–1045. doi: 10.1093/treephys/tps052 CrossRefPubMedGoogle Scholar
  34. Moser L, Fonti P, Büntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233. doi: 10.1093/treephys/tpp108 CrossRefPubMedGoogle Scholar
  35. Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP (2007) Exposure of global mountain systems to climate warming during the 21st century. Global Environ Chang 17:420–428. doi: 10.1016/j.gloenvcha.2006.11.007 CrossRefGoogle Scholar
  36. Piovesan G, Di Filippo A, Alessandrini A, Biondi F, Schirone B (2005) Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. J Veg Sci 16:13–28. doi: 10.1111/j.1654-1103.2005.tb02334.x Google Scholar
  37. Prislan P, Gričar J, De Luis M, Smith KT, Čufar K (2013) Phenological variations in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agr For Meteorol 180:142–151. doi: 10.1016/j.agrformet.2013.06.001 CrossRefGoogle Scholar
  38. R Development Core Team (2013) R: A language and environment for statistical computing. R foundation for statistical computing. Vienna. http://www.R-project.org/. Accessed 20 Feb 2016
  39. Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu QG, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu CZ, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357. doi: 10.1038/nature06937 CrossRefPubMedGoogle Scholar
  40. Rossi S, Anfodillo T, Menardi R (2006a) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27(1):89–97. doi: 10.1163/22941932-90000139 CrossRefGoogle Scholar
  41. Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006b) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310. doi: 10.1111/j.1469-8137.2006.01660.x CrossRefPubMedGoogle Scholar
  42. Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12. doi: 10.1007/s00442-006-0625-7 CrossRefPubMedGoogle Scholar
  43. Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, King GM, Krause C, Morin H, Oberhuber W, Prislan P, Rathgeber CBK (2013) A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere. Ann Bot 112(9):1911–1920. doi: 10.1093/aob/mct243 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rossi S, Girard M-J, Morin H (2014) Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob Chang Biol 20(7):2261–2271CrossRefPubMedGoogle Scholar
  45. Schuster C, Estrella N, Menzel A (2013) Shifting and extension of phenological periods with increasing temperature along altitudinal transects in southern Bavaria. Plant Biology 16(2):332–344. doi: 10.1111/plb.12071 CrossRefPubMedGoogle Scholar
  46. Semeniuc A, Popa I, Timofte A, Gueran DM (2014) Xylem phenology of Fagus sylvatica in Rarău Mountains (Eastern Carpathians, Romania). Not Bot Horti Agrobo 42(1):275–279Google Scholar
  47. Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in alpine spring phenology: a multivariate analysis approach. Clim Change 73:395–414. doi: 10.1007/s10584-005-6886-z CrossRefGoogle Scholar
  48. Swidrak I, Gruber A, Oberhuber W (2014) Xylem and phloem phenology in co-occurring conifers exposed to drought. Trees 28:1161–1171. doi: 10.1007/s00468-014-1026-x CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tegel W, Seim A, Hakelberg D, Hoffmann S, Panev M, Westphal T, Büntgen U (2014) A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur. J For Res 133(1):61–71. doi: 10.1007/s10342-013-0737-7 Google Scholar
  50. Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198. doi: 10.1007/s00442-009-1363-4 CrossRefPubMedGoogle Scholar
  51. Zang C, Rothe A, Weis W, Pretzsch H (2011) Tree suitability under climate change conditions: susceptibility of major forest tree species from tree-rings widths. Allg Forst Jagdztg 182. Jg, 5/6:98–112Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Technische Universität MünchenFreisingGermany
  2. 2.Technische Universität München, Institute for Advanced StudyGarchingGermany

Personalised recommendations