Advertisement

European Journal of Forest Research

, Volume 135, Issue 5, pp 981–996 | Cite as

Fine-scale patch mosaic of developmental stages in Northeast American secondary temperate forests: the European perspective

  • Kamil KrálEmail author
  • Jessica Shue
  • Tomáš Vrška
  • Erika B. Gonzalez-Akre
  • Geoffrey G. Parker
  • William J. McShea
  • Sean M. McMahon
Original Paper

Abstract

Conceptual models that describe temperate forest dynamics differ substantially between Europe and America. In Europe, the concept of the forest cycle describes a sequentially shifting fine-scale mosaic of patches in different phases of forest development. In North America, the descriptive concept is largely based on severe coarse-scale disturbances that repeat in a cyclic fashion and restart the succession of the whole forest stand from initiation through to ‘old-growth,’ neglecting the within-stand dynamics on the patch level. Here, we investigate fine-scale stand structures across European and North American forests by applying the European concept of forest developmental phases to all stands. The patches of four major forest developmental stages were recognized and delineated by the spatially explicit rule-based classification system implemented in GIS, which employs stem position maps of live and dead trees for analysis. The basic quantitative characteristics of identified patch structures in the N. American stands, as the Mean Patch Size of the mosaic (between 760 and 890 m2), were comparable with European old-growth stands, although mosaic complexity was higher in the latter. We demonstrated that in addition to the large-scale forest cycle assumed by N. American conceptual models there simultaneously exist finer-scale patch dynamics described by the European conceptual model. We also demonstrated that the occurrence of the Steady State stage was promoted by higher local tree species richness, which may explain the abundant occurrence of this stage in N. American secondary stands. The Steady State stage of the European model might represent an important commonality across both paradigms.

Keywords

Forest cycle Patch structure Fine-scale mosaic Developmental phases Mean patch size Successional dynamics 

Notes

Acknowledgments

We are grateful to all the people who participated in the forest plots censuses. Thanks to Petruška Doleželová and Dušan Adam for technical support. The research was funded by the Czech Ministry of Education, Youth and Sports (Project KONTAKT II—No. LH12038).

Supplementary material

10342_2016_988_MOESM1_ESM.tbx (1.8 mb)
Online Resource 1 ArcGIS Toolbox—‘Phase Classifier’ (TBX 1871 kb)
10342_2016_988_MOESM2_ESM.pdf (1 mb)
Online Resource 2 Additional figures and tables supporting some statements within the manuscript (PDF 1063 kb)

References

  1. Anderson-Teixeira KJ, Davies SJ, Bennett AC et al (2014) CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Global Change Biol 21:528–549. doi: 10.1111/gcb.12712 CrossRefGoogle Scholar
  2. Begehold H, Rzanny M, Winter S (2016) Patch patterns of lowland beech forests in a gradient of management intensity. For Ecol Manag 360:69–79CrossRefGoogle Scholar
  3. Bobiec A, van der Burgt H, Meijer K, Zuyderduyn C, Haga J, Vlaanderen B (2000) Rich deciduous forests in Bialowieza as a dynamic mosaic of developmental phases: premises for nature conservation and restoration management. For Ecol Manag 130:159–175CrossRefGoogle Scholar
  4. Bormann FH, Likens GE (1979a) Catastrophic disturbance and the steady state in northern hardwood forests. Am Sci 67:660–669Google Scholar
  5. Bormann FH, Likens GE (1979b) Pattern and process in a forested ecosystem. Springer, New YorkCrossRefGoogle Scholar
  6. Bourg NA, McShea WJ, Thompson JR, McGarvey JC, Shen X (2013) Initial census, woody seedling, seed rain, and stand structure data for the SCBI SIGEO Large forest dynamics plot. Ecology 94:2111CrossRefGoogle Scholar
  7. Braun-Blanquet J (1921) Prinzipien einer Systematik der Pflanzengesellschaften auf floristischer Grundlage. Jahrbuch der St. Gallischen Naturwissenschaftlichen Gesellschaft 57:305–351Google Scholar
  8. Brokaw NV (1982) The definition of treefall gap and its effect on measures of forest dynamics. Biotropica 14:158–160CrossRefGoogle Scholar
  9. Brown MJ, Parker GG (1994) Canopy light transmittance in a chronosequence of mixed-species deciduous forests. Can J For Res 24:1694–1703CrossRefGoogle Scholar
  10. Carey AB, Curtis RO (1996) Conservation of biodiversity: a useful paradigm for forest ecosystem management. Wildl Soc B 24:610–620Google Scholar
  11. Chen Y, Wright SJ, Muller-Landau HC, Hubbell SP, Wang Y, Yu S (2016) Positive effects of neighborhood complementarity on tree growth in a Neotropical forest. Ecology 97:776–785CrossRefPubMedGoogle Scholar
  12. Chisholm RA, Muller-Landau HC, Abdul Rahman K et al (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–1224CrossRefGoogle Scholar
  13. Cohen WB, Spies TA, Bradshaw GA (1990) Semivariograms of digital imagery for analysis of conifer canopy structure. Remote Sens Environ 34:167–178CrossRefGoogle Scholar
  14. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46CrossRefGoogle Scholar
  15. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310CrossRefPubMedGoogle Scholar
  16. Development Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  17. Efron B, Tibshirani R (1993) an introduction to the bootstrap. Chapman & Hall/CRC, Boca RatonCrossRefGoogle Scholar
  18. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Eugen Ulmer, StuttgartGoogle Scholar
  19. Fargione J, Tilman D, Dybzinski R et al (2007) From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. Pro R Soc Lond B Biol Sci 274:871–876CrossRefGoogle Scholar
  20. Fischer A, Marshall P, Camp A (2013) Disturbances in deciduous temperate forest ecosystems of the northern hemisphere: their effects on both recent and future forest development. Biodivers Conserv 22:1863–1893CrossRefGoogle Scholar
  21. Fleming GP, Patterson KD (2012) Natural communities of Virginia: ecological groups and community types. Natural Heritage Technical Report 12–04. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond, Virginia, USAGoogle Scholar
  22. Foster DR (1992) Land-use history (1730–1990) and vegetation dynamics in central New England, USA. J Ecol 80:753–772CrossRefGoogle Scholar
  23. Foster DR, Zebryk T, Schoonmaker P, Lezberg A (1992) Post-settlement history of human land-use and vegetation dynamics of a Tsuga canadensis (hemlock) woodlot in central New England. J Ecol 80:773–786CrossRefGoogle Scholar
  24. Franklin JF, Spies TA, Pelt RV et al (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manag 155:399–423CrossRefGoogle Scholar
  25. Frelich LE (2002) Forest dynamics and disturbance regimes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Frelich LE, Lorimer CG (1991) A simulation of landscape-level stand dynamics in the northern hardwood region. J Ecol 79:223–233CrossRefGoogle Scholar
  27. Janik D, Adam D, Vrska T, Hort L, Unar P, Kral K et al (2008) Tree layer dynamics of the Cahnov–Soutok near-natural floodplain forest after 33 years (1973–2006). Eur J For Res 127:337–345CrossRefGoogle Scholar
  28. Janik D, Adam D, Vrska T, Hort L, Unar P, Kral K, Samonil P, Horal D (2011) Field maple and hornbeam populations along a 4-m elevation gradient in an alluvial forest. Eur J For Res 130:197–208CrossRefGoogle Scholar
  29. Janik D, Adam D, Hort L, Kral K, Samonil P, Unar P, Vrska T, Horal D (2013) Spatiotemporal differences in tree spatial patterns between alluvial hardwood and mountain fir-beech forests: do characteristic patterns exist? J Veg Sci 24:1141–1153CrossRefGoogle Scholar
  30. Janik D, Adam D, Hort L, Kral K, Samonil P, Unar P, Vrska T (2014) Tree spatial patterns of Abies alba and Fagus sylvatica in the Western Carpathians over 30 years. Eur J For Res 133:1015–1028CrossRefGoogle Scholar
  31. Kane VR, Gersonde RF, Lutz JA, McGaughey RJ, Bakker JD, Franklin JF (2011) Patch dynamics and the development of structural and spatial heterogeneity in Pacific Northwest forests. Can J For Res 41:2276–2291CrossRefGoogle Scholar
  32. Korpel S (1982) Degree of equilibrium and dynamical changes of the forest on example of natural forests of Slovakia. Acta Fac For 24:9–30Google Scholar
  33. Korpel S (1995) Die Urwälder der Westkarpaten. Gustav Fischer Verlag, StuttgartGoogle Scholar
  34. Král K, Vrška T, Hort L, Adam D, Šamonil P (2010) Developmental phases in a temperate natural spruce-fir-beech forest: determination by a supervised classification method. Eur J For Res 129:339–351CrossRefGoogle Scholar
  35. Král K, McMahon SM, Janík D, Adam D, Vrška T (2014) Patch mosaic of developmental stages in central European natural forests along an elevation and vegetation gradient. For Ecol Manag 330:17–28CrossRefGoogle Scholar
  36. Leibundgut H (1959) Über Zweck und Methodik der Struktur und Zuwachsanalyse von Urwäldern. Schweizerische Zeitsschrift für Forstwesen 110:111–124Google Scholar
  37. Leibundgut H (1982) Europäische Urwälder der Bergstufe. Haupt, BernGoogle Scholar
  38. Linke J, Betts G, Lavigne B, Franklin SE (2007) Introduction: structure, function, and change of forest landscapes. In: Wulder A, Franklin SE (eds) Understanding forest disturbance and spatial pattern. Taylor & Francis, Abingdon, pp 1–29Google Scholar
  39. Lorimer CG, Halpin CR (2014) Classification and dynamics of developmental stages in late-successional temperate forests. For Ecol Manag 334:344–357CrossRefGoogle Scholar
  40. Mayer H (1984) Wälder Europas. Gustav Fischer Verlag, StuttgartGoogle Scholar
  41. Mayer H, Zukrigl K, Schrempf W, Schlager G (1989) Urwaldreste, Naturwaldreservate und schützenswerte Naturwälder in Österreich. Universität für Bodenkultur, WienGoogle Scholar
  42. McCarthy J (2001) Gap dynamics of forest trees: a review with particular attention to boreal forests. Environ Rev 9:1–59CrossRefGoogle Scholar
  43. McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. General Technical Report PNW-GTR-351, USDA Forest Service, Pacific Northwest Research Station, PortlandGoogle Scholar
  44. Miller RG (1964) A trustworthy jackknife. Ann Math Stat 35:1594–1605CrossRefGoogle Scholar
  45. Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219CrossRefPubMedGoogle Scholar
  46. Oliver CD, Larson BC (1990) Forest stand dynamics. McGraw-Hill Inc, New YorkGoogle Scholar
  47. Penka M, Vyskot M, Klimo E, Vašíček F (1985) Floodplain forest ecosystems I: before water management measures. Academia, PragueGoogle Scholar
  48. Pretzsch H, Schütze G (2016) Effect of tree species mixing on the size structure, density, and yield of forest stands. Eur J For Res 135:1–22CrossRefGoogle Scholar
  49. Průša E (1985) Die bömischen und mährischen Urwälder—ihre Struktur und Ökologie. Academia, PrahaGoogle Scholar
  50. Rempel RS, Kaukinen D, Carr AP (2012) Patch analyst and patch grid. Ontario Ministry of Natural Resources. Centre for Northern Forest Ecosystem Research, Thunder Bay, OntarioGoogle Scholar
  51. Runkle JR (1981) Gap regeneration in some old-growth forests of the eastern United States. Ecology 62:1041–1051CrossRefGoogle Scholar
  52. Šamonil P, Vrška T (2007) Trends and cyclical changes in natural fir–beech forests at the North-western Edge of the Carpathians. Folia Geobot 42:337–361CrossRefGoogle Scholar
  53. Shugart HH (1984) A theory of forest dynamics. Springer, New YorkCrossRefGoogle Scholar
  54. Spies TA, Franklin JF (1996) The diversity and maintenance of old-growth forests. Biodiversity in managed landscapes: theory and practice. Oxford University Press, New York, pp 296–314Google Scholar
  55. Standovár T, Kenderes K (2003) A review on natural stand dynamics in Beechwods of East Central Europe. Appl Ecol Environ Res 1:19–46CrossRefGoogle Scholar
  56. Tabaku V (2000) Struktur von Buchen-Urwäldern in Albanien im Vergleich mit deutschen Buchen Naturwaldreservaten und Wirtschaftswäldern. Cuvillier Verlag, GöttingenGoogle Scholar
  57. Tesař V, Krečmer V (2001) Search for a balance between changing requirements for benefits from the forest and its condition in the Moravian-Silesian Beskids (Czech Republic). Schweiz Z Forstwes 152:145–151CrossRefGoogle Scholar
  58. Tolasz R, Míková T, Valeriánová A, Voženílek V (2007) Climate atlas of Czechia. Český hydrometeorologicky ústav a Univerzita Palackého v Olomouci, Prague-OlomoucGoogle Scholar
  59. Unar P, Šamonil P (2008) The evolution of natural floodplain forests in South Moravia between 1973 and 2005. J For Sci 54:340–354Google Scholar
  60. Vandekerkhove K, De Keersmaeker L, Menke N, Meyer P, Verschelde P (2009) When nature takes over from man: dead wood accumulation in previously managed oak and beech woodlands in North-western and Central Europe. For Ecol Manag 258:425–435CrossRefGoogle Scholar
  61. Vandekerkhove K, De Keersmaeker L, Walleyn R, Kohler F, Crevecoeur L, Govaere L, Thomaes A, Verheyen K (2011) Reappearance of old-growth elements in lowland woodlands in northern Belgium: do the associated species follow? Silva Fenn 45:909–935CrossRefGoogle Scholar
  62. Vrška T, Adam D, Hort L, Odehnalova P, Horal D, Kral K (2006) Developmental dynamics of virgin forest reserves in the Czech Republic II—Floodplain forests—Cahnov-Soutok, Ranšpurk, Jiřina. Academia, PragueGoogle Scholar
  63. Vrška T, Adam D, Hort L, Kolář T, Janík D (2009) European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians—a developmental cycle or a linear trend induced by man? For Ecol Manag 258:347–356CrossRefGoogle Scholar
  64. Vrška T, Šamonil P, Unar P, Hort L, Adam D, Kral K, Janik D (2012) Developmental dynamics of virgin forest reserves in the Czech Republic III—Šumava Mts. and Český les Mts.—Diana, Stožec, Boubín virgin forests, Milešice virgin forest. Academia, PragueGoogle Scholar
  65. Watt AS (1947) Pattern and process in the plant community. J Ecol 35:1–22CrossRefGoogle Scholar
  66. Wiens JA (1995) Landscape mosaics and ecological theory. In: Hansson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Springer, Dordrecht, pp 1–26. doi: 10.1007/978-94-011-0717-4_1 CrossRefGoogle Scholar
  67. Winter S, Brambach F (2011) Determination of a common forest life cycle assessment method for biodiversity evaluation. For Ecol Manag 262:2120–2132CrossRefGoogle Scholar
  68. Worrall JJ, Lee TD, Harrington TC (2005) Forest dynamics and agents that initiate and expand canopy gaps in Picea–Abies forests of Crawford Notch, New Hampshire, USA. J Ecol 93:178–190CrossRefGoogle Scholar
  69. Zang R, Tao J, Li C (2005) Within community patch dynamics in a tropical montane rain forest of Hainan Island. South China Acta Oecologica 28:39–48CrossRefGoogle Scholar
  70. Zukrigl K, Eckhardt G, Nather J (1963) Standortskundliche und waldbauliche Untersuchungen in Urwaldresten der nielderösterreichischen Kalkalpen. Mitteilungen Forst Bundesversuchanstalt 62:1–244Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kamil Král
    • 1
    Email author
  • Jessica Shue
    • 2
  • Tomáš Vrška
    • 1
  • Erika B. Gonzalez-Akre
    • 3
  • Geoffrey G. Parker
    • 2
  • William J. McShea
    • 3
  • Sean M. McMahon
    • 2
  1. 1.Department of Forest EcologyThe Silva Tarouca Research Institute for Landscape and Ornamental GardeningBrnoCzech Republic
  2. 2.Smithsonian Environmental Research CenterSmithsonian Institution’s Forest Global Earth ObservatoryEdgewaterUSA
  3. 3.Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalUSA

Personalised recommendations