European Journal of Forest Research

, Volume 135, Issue 5, pp 919–936 | Cite as

Adapting Douglas-fir forestry in Central Europe: evaluation, application, and uncertainty analysis of a genetically based model

  • Debojyoti Chakraborty
  • Tongli Wang
  • Konrad Andre
  • Monika Konnert
  • Manfred J. Lexer
  • Christoph Matulla
  • Lambert Weißenbacher
  • Silvio Schueler
Original Paper

Abstract

Recommendations on suitable seed sources for reforestation are usually model based and include uncertainties arising from model assumptions, parameter estimation, and future climate scenarios. Due to the long-lived nature of forests, such uncertainties need to be considered when developing guidance for managers and policy makers. We evaluate the uncertainties and apply our recently developed genetically based models, Universal Response Functions (URFs) in Austria and Germany. The URFs predict growth performance (dominant height and basal area at age 24) of Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco) populations, as a function of both environmental and genetic factors. We evaluated the URFs by comparing the predicted height growth performances with observations from independent provenance trial data across Europe. Also, the sensitivity of the URF variables and the overall model uncertainty were estimated and compared to the uncertainty due to climate change projections. Model evaluation suggests that the URFs perform better in Central and Southeastern Europe compared to maritime Western Europe. Summer drought and mean annual temperature of planting sites were the most sensitive variables of the models, whereas the mean annual temperature of seed origin was the least sensitive. Model uncertainty increased with mean annual temperature of the planting site. Uncertainty due to projected future climate was found to be higher than the model uncertainty. The URFs predicted that provenance regions of southwest Germany and southeast Austria below 1500 m altitude will be suitable, whereas Pannonian east of Austria will become less suitable for growing Douglas-fir in future. Current seed stands in North America providing planting materials for Europe under the legal framework of the Organization for Economic Cooperation and Development shall continue to provide the most suitable seed material also in the future.

Keywords

Climate change Douglas-fir Provenance trials Seed origin Uncertainty 

Supplementary material

10342_2016_984_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1386 kb)
10342_2016_984_MOESM2_ESM.docx (59 kb)
Supplementary material 2 (DOCX 58 kb)

References

  1. Albert M, Hansen J, Nagel J et al (2015) Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change. For Ecosyst 2:14CrossRefGoogle Scholar
  2. Andalo C, Beaulieu J, Bousquet J (2005) The impact of climate change on growth of local white spruce populations in Québec, Canada. For Ecol Manage 205:169–182CrossRefGoogle Scholar
  3. Audet C, Orban D (2006) Finding optimal algorithmic parameters using derivative-free optimization. SIAM J Optim 17:642–664CrossRefGoogle Scholar
  4. Aussenac G (1980) Premiers résultats d’une étude de l’influence de l’alimentation en eau sur la croissance des arbres dans un peuplement de Douglas (Pseudotsuga menziesii (Mirb.) Franco) [Preliminary results of a study on the influence of the availability of water on the growth of trees in a stand of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco)]. Revue Forestière Française 32(2):167–172CrossRefGoogle Scholar
  5. Ballian D, Mikic T, Pintaric K (2002) Provenance trials with Douglas-fir (Pseudotsuga menziesii (Mirb) Franco) at Blinje site near Kresevo. Works of the Faculty of Forestry, University of Sarajevo 1:9–18Google Scholar
  6. Bansal S, Harrington CA, Gould PJ, St Clair JB (2014) Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Glob Change Biol 21(2):947–958CrossRefGoogle Scholar
  7. Block K, Mauritsen T (2013) Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. J Adv Model Earth Syst 5:676–691CrossRefGoogle Scholar
  8. Bolte A, Ammer C, Löf M et al (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  10. Carter KK (1996) Provenance tests as indicators of growth response to climate change in 10 north temperate tree species. Can J For Res 26:1089–1095CrossRefGoogle Scholar
  11. Chakraborty D, Wang T, Andre K et al (2015) Selecting populations for non-analogous climate conditions using universal response functions: the case of Douglas-fir in Central Europe. PloS One 10:e0136357CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46CrossRefGoogle Scholar
  13. Ducci F, Tocci A (1987) Primi risultati della sperimentazione IUFRO 1969-70 su (Pseudotsuga menziesii (Mirb.) Franco) Franco nell’appennino centro-sette [First results of IUFRO/1969-70 experimentation on (Pseudotsuga menziesii (Mirb.) Franco) in Northern and Central Apennines]. Annali dell’Istituto Sperimentale per la Selvicoltura, Arezzo 18:215–289Google Scholar
  14. Eckhart T, Hintsteiner W, Lair G, van Loo M, Hasenauer H (2014) The impact of soil conditons on the growth of Douglas-fir in Austria. Austrian J For Sci 131(2):107–127Google Scholar
  15. Eilmann B, de Vries SMG, den Ouden J et al (2013) Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb.)) provenances. For Ecol Manag 302:133–143CrossRefGoogle Scholar
  16. European Union (2000) Council Directive 1999/105/EC of 22 December 1999 on the marketing of forest reproductive material. Off J Eur Commun 11:17–40Google Scholar
  17. Gardner RH, Dale VH, O’Neill RV (1990) Error propagation and uncertainty in process modelling. In: Dixon RK, Meldahl RS, Ruark GA, Warren WG (eds) Process modeling of forest growth responses to environmental stress. Timber Press, Portland, pp 208–219Google Scholar
  18. Hallgren WS, Pitman AJ (2000) The uncertainty in simulations by a global biome model (BIOME3) to alternative parameter values. Glob Change Biol 6:483–495CrossRefGoogle Scholar
  19. Hammonds JS, Hoffman FO, Bartell SM (1994) An introductory guide to uncertainty analysis in environmental and health risk assessment. US DOE, Washington, DC.Google Scholar
  20. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  21. Isaac-Renton MG, Roberts DR, Hamann A, Spiecker H (2014) Douglas-fir plantations in Europe: a retrospective test of assisted migration to address climate change. Glob Change Biol 20:2607–2617CrossRefGoogle Scholar
  22. Kapeller S, Lexer MJ, Geburek T et al (2012) Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: selecting appropriate provenances for future climate. For Ecol Manag 271:46–57CrossRefGoogle Scholar
  23. Karasözen B (2007) Survey of trust-region derivative free optimization methods. J Ind Manag Optim 3:321–334CrossRefGoogle Scholar
  24. Kenk G, Thren M (1958) Ergebnisse verschiedener Douglasien provenienzversuche in Baden-Württemberg. Teil I. Der Internationale Douglasien-Provenienzversuch 1958 [Results of different Douglas-fir provenance trials in Baden-Württemberg. Part I: The International Douglas-fir Provenance Trial 1958]. Allgemeine Forst und Jagdzeitung 155(7/8):165–184Google Scholar
  25. Kölling C (2008) Die Douglasie im Klimawandel: Gegenwärtige und zukünftige Anbaubedingungen in Bayern. LWF Wissen, Bavaria, Germany, pp 12–21Google Scholar
  26. Konnert M, Ruetz W (2006) Genetic aspects of artificial regeneration of Douglas-fir (Pseudotsuga menziesii) in Bavaria. Eur J For Res 125:261–270CrossRefGoogle Scholar
  27. Konnert M, Fady B, Gömöry D, et al. (2015) Use and transfer of forest reproductive material in Europe in the context of climate change. European Forest Genetic Resources Programme (EUFORGEN), Bioversity International, Rome, Italy. xvi and p 75Google Scholar
  28. Körkel S, Qu H, Rücker G, Sager S (2005) Derivative based vs. derivative free optimization methods for nonlinear optimum experimental design. In: Zhang W, Tong W, Chen Z, Glowinski R (eds) Current trends in high performance computing and its application: proceedings of the international conference on high Performance computing and applications, August 8-10, 2004, Shanghai, P.R. China. Springer, Berlin, pp 339–344Google Scholar
  29. Kranenborg KG, de Vries SM (1995) Douglas fir provenance research in the Netherlands: 1966 67 IUFRO Series. IBN Research Report, 95/1, p 27. Institute for Forestry and Nature Research, Wageningen.Google Scholar
  30. Lally M, Thomson D (1998) Best seed origins for Douglas-fir. Coillte Research and Development, Information note No 17, Newtownmountkennedy, Co. WicklowGoogle Scholar
  31. Lexer MJ, Hönninger K (2004) Effects of error in model input: experiments with a forest patch model. Ecol Model 173:159–176CrossRefGoogle Scholar
  32. Lindner M, Fitzgerald JB, Zimmermann NE et al (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83CrossRefGoogle Scholar
  33. Loehle C (1997) A hypothesis testing framework for evaluating ecosystem model performance. Ecol Model 97:153–165CrossRefGoogle Scholar
  34. Loehle C, LeBlanc D (1996) Model-based assessments of climate change effects on forests: a critical review. Ecol Model 90:1–31CrossRefGoogle Scholar
  35. Lumley T (2009) Leaps: regression subset selection. R package. The Comprehensive R Archive Network, WashingtonGoogle Scholar
  36. Magnesen S (1986) The International Short Term Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) Provenance Experiment in West Norway, Meddelelser Fra Norsk Institutt for Skogforskning, pp 295–312Google Scholar
  37. Marris E (2008) Moving on assisted migration. Nat Rep Clim Change 2:112–113CrossRefGoogle Scholar
  38. Matyas C (1994) Modeling climate change effects with provenance test data. Tree Physiol 14:797–804CrossRefPubMedGoogle Scholar
  39. McLachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302CrossRefPubMedGoogle Scholar
  40. Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151CrossRefPubMedGoogle Scholar
  41. Montwé D, Spiecker H, Hamann A (2015) Five decades of growth in a genetic field trial of Douglas-fir reveal trade-offs between productivity and drought tolerance. Tree Genet Genomes 11:1–11CrossRefGoogle Scholar
  42. Nanson A (1978) Belgian Provenance Experiments with Douglas-fir, Grand fir and Sitka spruce. In: Proceedings of the IUFRO joint meeting of working parties, Vancouver, Canada, 1978, vol 2, 335–346. B.C. Ministry of Forests Information Services Branch, VictoriaGoogle Scholar
  43. OECD (2012) Forest seed and plant scheme 2012 rules and regulations OECD scheme for the certification of forest reproductive. OECD, ParisGoogle Scholar
  44. Pearson RG, Thuiller W, Araújo MB et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33(10):1704–1711CrossRefGoogle Scholar
  45. Perić S, Jazbec A, Mladen I (2005) Analysis of height and diameter breast height for Douglas-fir provenances test. In: Luzar V, Dobric VH (eds) 27th International Conference Information Technology Interfaces ITI 2005, June 20–23, Cavtat, p 4. SRCE University Computing Centre, University of Zegreb, CavtatGoogle Scholar
  46. Perić S, Jazbec A, Tijardovi M, Margaleti J, Mladen I, Pila I, Medak J (2009) Provenance studies of Douglas-fir in the locality of Kontija (Istria). Periodicum Biologorum UDC 57:61 111(4):487–493Google Scholar
  47. Petkova K (2011) Investigation of Douglas-fir provenance test in North-Western Bulgaria at age 20. For Ideas 17(2):42Google Scholar
  48. R Core Team (2013) R Core Team. R: a language and environment for statistical computing R Foundation for statistical computing, Vienna, Austria ISBN 3–900051–07–0. http://www.R-project.org/
  49. Reyer C (2013) The cascade of uncertainty in modeling forest ecosystem responses to environmental change and the challenge of sustainable resource management. Doctoral Thesis. Mathematisch-Naturwissenschaftliche Fakultät II Humbodt Unviversität Berlin 168Google Scholar
  50. Rios LM, Sahinidis NV (2013) Derivative-free optimization: a review of algorithms and comparison of software implementations. J Global Optim 56:1247–1293CrossRefGoogle Scholar
  51. Schlueter M, Munetomo M (2013) User guide. Technical report, Hokkaido University, Japan (HUSCAP) (2013). http://www.midacosolver.com/data/other/MIDACO_User_Guide.pdf
  52. Schober R (1955) Douglasien Provenienzversuche [Douglas-fir Provenance Trials]. Allgemeine Forst- und Jagdzeitung 125(5):160–179Google Scholar
  53. Sika A, Pav B (1990) Vyskovy Rust Douglasky Na Proveniencnich Plochach CR V Ruznych Fazich Vyvoje [Height Growth of Douglas Firs in Different Developmental Phases on Provenance Areas in the Czech Republic]. Lesnictvi 36:367–380Google Scholar
  54. Silander V, Lehtonen J, Nikkanen T (2000) Pseudotsuga Douglaskuusi. In: Silander V, Lehtonen J, Nikkanen T (eds) Ulkomaisten havupuulajien menestyminen Etela-Suomessa [Performance of exotic conifers in Southern Finland], pp 81–84. Mets¨antutkimuslaitoksen tiedonantoja, Vantaa, Mets¨antutkimuslaitos, Muhoksen Tutkimusasema.Google Scholar
  55. Spadavecchia L, Williams M, Law BE (2011) Uncertainty in predictions of forest carbon dynamics: separating driver error from model error. Ecol Appl: A Publ Ecol Soc Am 21:1506–1522CrossRefGoogle Scholar
  56. Spittlehouse DL, Stewart RB (2003) Adaptation to climate change in forest management. BC J Ecosyst Manag 4:1–11Google Scholar
  57. St Clair JB, Mandel NL, Vance-Borland KW (2005) Genecol Douglas-fir in Western Oregon and Washington. Ann Bot 96:1199–1214CrossRefPubMedPubMedCentralGoogle Scholar
  58. Temperli C, Bugmann H, Elkin C (2012) Adaptive management for competing forest goods and services under climate change. Ecol Appl 22:2065–2077CrossRefPubMedGoogle Scholar
  59. van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  60. Wang T, Hamann A, Yanchuk A et al (2006) Use of response functions in selecting lodgepole pine populations for future climates. Glob Change Biol 12:2404–2416CrossRefGoogle Scholar
  61. Wang T, O’Neill GA, Aitken SN (2010) Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol Appl 20:153–163CrossRefPubMedGoogle Scholar
  62. Wang T, Campbell EM, O’Neill GA, Aitken SN (2012a) Projecting future distributions of ecosystem climate niches: uncertainties and management applications. For Ecol Manag 279:128–140CrossRefGoogle Scholar
  63. Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012b) ClimateWNA—high-resolution spatial climate data for Western North America. J Appl Meteorol Climatol 51:16–29CrossRefGoogle Scholar
  64. Yang J, Pedlar JH, McKenney DW, Weersink A (2015) The development of universal response functions to facilitate climate-smart regeneration of black spruce and white pine in Ontario, Canada. For Ecol Manag 339:34–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Debojyoti Chakraborty
    • 1
    • 5
  • Tongli Wang
    • 2
  • Konrad Andre
    • 3
  • Monika Konnert
    • 4
  • Manfred J. Lexer
    • 5
  • Christoph Matulla
    • 3
  • Lambert Weißenbacher
    • 1
  • Silvio Schueler
    • 1
  1. 1.Department of Forest GeneticsFederal Research and Training Centre for Forest, Natural Hazards and LandscapeViennaAustria
  2. 2.Department of Forest and Conservation Sciences, Centre for Forest Conservation GeneticsUniversity of British ColumbiaVancouverCanada
  3. 3.Central Institute for Meteorology und GeodynamicsViennaAustria
  4. 4.Bavarian Office for Forest Seeding and PlantingTeisendorfGermany
  5. 5.Department of Forest and Soil Sciences, Institute of SilvicultureUniversity of Natural Resources and Life SciencesViennaAustria

Personalised recommendations